Skip to main content

Person

John C Warner

Research Oceanographer

Email: jcwarner@usgs.gov
Office Phone: 508-457-2237
Fax: 508-457-2310
ORCID: 0000-0002-3734-8903

Location
384 Woods Hole Road
Woods Hole , MA 02543-1598
US
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate ocean circulation, waves, and sediment transport to study barrier island breaches that occurred during Hurricane Matthew (2016) near Matazas FL, and Hurricane Sandy (2012) at Fire Island, NY. Hurricane Sandy was a Saffir-Simpson Category 2 hurricane that transited the Western Atlantic Ocean relatively far offshore of the US East Coast for five days until turning west to make landfall in New Jersey on 29 October 2012, causing extreme coastal erosion and flooding with destruction to residences and infrastructure along the East coast, particularly in the New York Bight. Maximum...
thumbnail
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate three-dimensional hydrodynamics and waves to study salinity intrusion in the Delaware Bay estuary for 2016, 2018, 2021. Salinity intrusion in coastal systems is due in part to extreme events like drought or low-pressure storms and longer-term sea level rise, threatening economic infrastructure and ecological health. Along the eastern seaboard of the United States, approximately 13 million people rely on the water resources of the Delaware River basin, which is actively managed to suppress the salt front (or ~0.52 daily averaged psu line) through river discharge targets. However,...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, Earth Science > Oceans > Salinity/Density > Salinity, Earth Science > Oceans > Sea Surface Topography > Sea Surface Height, Earth Science Services > Models > Weather Research/Forecast Models, All tags...
thumbnail
The numerical simulation of estuarine dynamics requires accurate prediction for the transport of tracers such as temperature and salinity. All numerical models introduce two kinds of tracer mixing: 1) by parameterizing the tracer eddy diffusivity through turbulence models leading to a source of physical mixing and 2) discretization of the tracer advection term that leads to numerical mixing. Both physical and numerical mixing vary with the choice of horizontal advection schemes, grid resolution, and time step. We utilize the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model to study the mixing in the model by simulating four idealized cases with three different tracer advection schemes.
The idealized test domain is utilized to study vertical tracer mixing without the presence of advection terms. The tracer starts to mix under the application of a surface stress. The model results are intended to be accessed from the THREDDS data server available through the related external resources. The model NetCDF files are stored on this trusted digital repository to ensure backup and longevity of these data.
thumbnail
Transport of material in an estuary is important for water quality and hazards concern. We studied these processes in the Hudson River Estuary, located along the northeast coast of the U.S. using the COAWST numerical modeling system. A skill assessment of the COAWST model for the 3-D salinity structure of the estuary has been successfully studied in the past, and the present research extended that understanding to look at both physical and numerical mixing. The model grid extends from the south at the Battery, NY to the north in Troy, NY. The simulation is performed from March 25 to July 11, 2005 (111 days). For more information see: https://doi.org/10.5066/P95E8LAS.
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.