Skip to main content

Person

Brett J Valentine

Physical Scientist

Geology, Energy & Minerals Science Center

Email: bvalentine@usgs.gov
Office Phone: 703-648-6480
Fax: 703-648-6419
ORCID: 0000-0002-8678-2431

Location
John W Powell FB
12201 Sunrise Valley Drive
Reston , VA 20192-0002
US

Supervisor: Evan A Bargnesi
thumbnail
To test if reflectance increases to sedimentary organic matter (vitrinite) caused by broad ion beam (BIB) milling were related to molecular aromatization and condensation, we used Raman and Fourier transform infrared (FTIR) spectroscopies to evaluate potential compositional changes in the same vitrinite locations pre- and post-BIB milling. The same locations also were examined by atomic force microscopy (AFM) to determine topographic changes caused by BIB milling (as expressed by the areal root-mean-square roughness parameter Rq). Samples consisted of four medium volatile bituminous coals. We used a non-aggressive BIB milling approach with conditions of [(5 min, 4 keV, 15°incline, 360° rotation at 25 rpm and 100%...
Geological models for petroleum generation suggest thermal conversion of oil-prone sedimentary organic matter in the presence of water promotes increased liquid saturate yield, whereas absence of water causes formation of an aromatic, cross-linked solid bitumen residue. To test the influence of exchangeable hydrogen from water, organic-rich (22 wt.% total organic carbon, TOC) mudrock samples from the Eocene lacustrine Green River Mahogany zone oil shale were pyrolyzed under hydrous and anhydrous conditions at temperatures between 300 and 370°C for 72 hrs. Petrographic approaches including optical microscopy, reflectance, Raman spectroscopy, and scanning electron and transmission electron microscopy, supplemented...
thumbnail
This study presents Raman spectroscopic data paired with scanning electron microscopy (SEM) to assess solid bitumen composition and porosity development as a function of solid bitumen texture and association with minerals. A series of hydrous pyrolysis experiments (1-103 days, 300-370°C) using a low maturity (0.25% solid bitumen reflectance, BRo), high total organic carbon [(TOC), 14.0 wt. %] New Albany Shale sample as the starting material yielded pyrolysis residues designed to evaluate the evolution of TOC, solid bitumen aromaticity, and organic porosity development with increasing temperature and heating duration. Solid bitumen was analyzed by Raman spectroscopy wherein point data was collected from accumulations...
thumbnail
Research examining organic-matter hosted porosity has significantly increased during the last ten years due to greater focus on understanding hydrocarbon migration and storage in source-rock reservoirs, and technological advances in scanning electron microscopy (SEM) capabilities. The examination of nanometer-scale organic-matter hosted porosity by SEM requires the preparation of exceptionally flat geologic samples beyond the abilities of traditional mechanical polishing which can deform or otherwise obscure organic surfaces. To meet this demand, broad ion beam (BIB) milling was introduced as a sample preparation technique for SEM petrographic analysis of geologic samples. But like with any sample preparation technique,...
thumbnail
The U.S. Geological Survey assessed undiscovered unconventional hydrocarbon resources reservoired in the Upper Cretaceous Tuscaloosa marine shale (TMS) of southern Mississippi and adjacent Louisiana in 2018. As part of the assessment, oil- source rock correlations were examined in the study area where operators produce light (38-45° API), sweet oil from horizontal, hydraulically-fractured wells in an overpressured ‘high-resistivity’ (>5 ohm-m) zone (HRZ) at the base of the TMS. Our initial characterization of TMS samples indicated overall low organic carbon (avg. TOC ~1.0%) and dominance of a gas-prone Type III or mixed Type II/III kerogen, potentially inconsistent with a self-sourced petroleum system model for...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.