Skip to main content

Person

Jeffrey A Coe

Research Geologist

Email: jcoe@usgs.gov
Office Phone: 303-273-8606
Fax: 303-273-8452
ORCID: 0000-0002-0842-9608

Location
P.O. Box 25046
Mail Stop 966
Denver , CO 80225-0046
US
thumbnail
Subaerial landslides at the head of Barry Arm Fjord in southern Alaska could generate tsunamis (if they rapidly failed into the Fjord) and are therefore a potential threat to people, marine interests, and infrastructure throughout the Prince William Sound region. Knowledge of ongoing landslide movement is essential to understanding the threat posed by the landslides. Because of the landslides' remote location, field-based ground monitoring is challenging. Alternatively, periodic acquisition and interferometric processing of satellite-based synthetic aperture radar data provide an accurate means to remotely monitor landslide movement. Interferometric synthetic aperture radar (InSAR) uses two Synthetic Aperture...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). This "Child item" page includes videos of debris flows captured by one of the high-definition cameras at the monitoring site in Chalk Cliffs, CO. This camera (Wide-angle camera) is located near Station 1 on the opposite side of the basin with a broad view of the channel. The attached figure "station_and_camera_locations.png" provides an overview figure with the location of the three cameras and three stations along the channel. Video recording for all cameras is triggered using a rainfall threshold, derived from rainfall measurements from a rain gauge (Michel et al.,...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). Three stations were set up at Chalk Cliffs which are located sequentially along a channel draining the 0.3 km2 study area. These stations are equipped with rain gauges, laser distance meters, and data loggers to record rainfall and stage data (Kean, et al., 2020). This data release includes videos of debris-flows and floods captured by high-definition cameras placed at two different locations, associated with the monitoring stations, along the study area at Chalk Cliffs during 2015. Both cameras are located near the Upper Station (Station 1). One is located at the bridge...
thumbnail
Multiple subaerial landslides adjacent to Prince William Sound, Alaska (for example, Dai and others, 2020; Higman and others, 2023; Schaefer and others, 2024) pose a threat to the public because of their potential to generate ocean waves (Dai and others, 2020; Barnhart and others, 2021; Barnhart and others, 2022) that could impact towns and marine activities. One bedrock landslide on the west side of Barry Arm fjord drew international attention in 2020 because of its large size (~500 M m3) and tsunamigenic potential (Dai and others, 2020). As part of the U.S. Geological Survey response to the detection of the potentially tsunamigenic landslide at Barry Arm, as well as a broader effort to evaluate bedrock landslide...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Alaska, Barry Arm, Barry Arm, Blackstone Bay, Cochrane Bay, All tags...
thumbnail
The effects of climate change have the potential to impact slope stability. Negative impacts are expected to be greatest at high northerly latitudes where degradation of permafrost in rock and soil, debuttressing of slopes as a result of glacial retreat, and changes in ocean ice-cover are likely to increase the susceptibility of slopes to landslides. In the United States, the greatest increases in air temperature and precipitation are expected to occur in Alaska. In order to assess the impact that these environmental changes will have on landslide size (magnitude), mobility, and frequency, inventories of historical landslides are needed. These inventories provide baseline data that can be used to identify changes...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.