Skip to main content

Person

Jeff Conaway

Associate Center Director Water, Ice, and Landscape Dynamics

Alaska Science Center

Email: jconaway@usgs.gov
Office Phone: 907-786-7041
Fax: 907-786-7150
ORCID: 0000-0002-3036-592X

Location
Glenn Olds Hall
4210 University Drive
Anchorage , AK 99508-4626
US

Supervisor: Christian E Zimmerman
thumbnail
Suicide Basin is a glacier-fed lake that branches off Mendenhall Glacier in Juneau, Alaska. Since 2011, Suicide Basin has been collecting melt- and rainwater each summer, creating a temporary glacier-dammed lake. Water that accumulates typically gets released through channels that run beneath the glacier. These channels are normally blocked by ice, but if the water pressure gets too high the channel breaks open, rapidly draining the basin in what is known as an “outburst flood”. In past years, these events have led to flooding along Mendenhall Lake and Mendenhall River in the most heavily populated neighborhood of Juneau. Because of the threats posed to infrastructure in the Mendenhall Valley, it is critical that...
thumbnail
This data release includes digital orthophotos acquired from a fixed-wing aircraft and field measurements of flow velocity from the Tanana and Nenana Rivers near Nenana, Alaska, obtained on August 18 and 19, 2021. This parent data release includes links to child pages for two data sets produced during the study: 1. Acoustic Doppler Current Profiler (ADCP) field measurements of flow velocity from the Tanana and Nenana Rivers, Alaska, collected on August 18, 2021. 2. Digital orthophotos of the Tanana and Nenana Rivers, Alaska, acquired from a fixed-wing aircraft on August 19, 2021. Please refer to the individual child pages for further detail about each data set. Overall, these data were used to assess the...
Suicide Basin is a partly glacierized marginal basin of Mendenhall Glacier, Alaska, that has released glacier lake outburst floods (GLOFs) annually since 2011. The floods cause inundation and erosion in the Mendenhall Valley, impacting homes and other infrastructure. Here, we utilize in-situ and remote sensing data to assess the recent evolution and current state of Suicide Basin. We focus on the 2018 and 2019 melt seasons, during which we collected most of our data, partly using unmanned aerial vehicles (UAVs). To provide longer-term context, we analyze DEMs collected since 2006 and model glacier surface mass balance over the 2006–2019 period. During the 2018 and 2019 outburst flood events, Suicide Basin released...
Categories: Publication; Types: Citation
thumbnail
Field measurements of depth-averaged flow velocity were acquired from the Tanana and Nenana Rivers near Nenana, Alaska, August 18, 2021, to support research on estimating surface flow velocities from remotely sensed data via particle image velocimetry (PIV). The velocity measurements included in this data release were obtained using a TRDI RiverRay acoustic Doppler current profiler (ADCP) deployed from a boat with an outboard motor. These data were collected along 7 cross-sections on the Tanana River and 7 cross-sections on the Nenana River; two passes across the channel were made at each cross-section. This data release provides depth-averaged flow velocities derived from the raw ADCP data using the TRDI WinRiver...
thumbnail
Water temperature plays a large role in freshwater ecosystems in the Arctic and sub-Arctic. It affects the physical and biological features of rivers, like how the water interacts with the landscape and the life cycles of organisms that live in the river. For example, unseasonably warm water temperatures in Alaska’s large rivers in 2019 caused large numbers of salmon to die before they could reach their spawning grounds. Though water temperature data is important for natural resources monitoring programs, these data are historically lacking and hard to collect for large river systems. Satellites and other remote sensing techniques can offer valuable insight to Alaskan stream conditions. They can measure thermal...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.