Skip to main content

Person

Leonardo Frid

Agent-based models (ABMs) and state-and-transition simulation models (STSMs) have proven useful for understanding processes underlying social-ecological systems and evaluating practical questions about how systems might respond to different scenarios. ABMs can simulate a variety of agents (i.e., autonomous units, such as wildlife, people, or viruses); agent characteristics, decision-making, adaptive behavior, and mobility; and interactions between agents and their environment. STSMs are flexible and intuitive stochastic models of landscape dynamics that can track scenarios and landscape attributes, and integrate diverse data types. Both can be run spatially and track metrics of management success. Due to the complementarity...
thumbnail
Managing natural resources is fraught with uncertainties around how complex social-ecological systems will respond to management actions and other forces, such as climate. Modeling tools have emerged to help grapple with different aspects of this challenge, but they are often used independently. The purpose of this project is to link two types of commonly-used simulation models (agent-based models and state-and-transition simulation models) and streamline the handling of model inputs and outputs. This innovation will provide researchers with the capability to simulate the interactions of wildlife, vegetation, management actions, and other drivers, and thus answer questions and inform decisions about how best to...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.