Skip to main content

Person

Toby D Feaster

Hydrologist

Email: tfeaster@usgs.gov
Office Phone: 803-750-6100
ORCID: 0000-0002-5626-5011
thumbnail
This dataset contains an inventory of South Carolina U.S. Geological Survey (USGS) streamgages evaluated in 2017 as part of gage network gap assessment. Both continuous record and crest stage gages are included in this dataset. The data are grouped into three categories: rural streamgages with equal to or greater than 10 years of peak-flow data, rural streamgages with less than 10 years of peak-flow data, and urban streamgages.
thumbnail
The U.S. Geological Survey (USGS) has a long history of working cooperatively with the South Carolina Department of Transportation to develop methods for estimating the magnitude and frequency of floods for rural and urban basins that have minimal to no regulation or tidal influence. As part of those previous investigations, flood-frequency estimates have been generated at selected regulated streamgages. This is the data release for the report which assesses the effects of impoundments on flood-frequency characteristics by comparing annual exceedance probability (AEP) streamflows from pre- and post-regulated (before and after impoundment) periods at 18 USGS long-term streamgages, which is defined as a streamgage...
thumbnail
Streamflow data and statistics are vitally important for proper protection and management of both the water quality and water quantity of Alabama streams. Such data and statistics are available at U.S. Geological Survey streamflow-gaging stations, also referred to as streamgages or stations, but are often needed at ungaged stream locations. To address this need, the U.S. Geological Survey, in cooperation with numerous Alabama State agencies and organizations, developed regional regression equations for estimating selected low-flow frequency statistics and mean annual flow for ungaged locations in Alabama that are not substantially affected by tides, regulation, diversions, or other anthropogenic influences. This...
thumbnail
Reliable estimates of the magnitude and frequency of floods are an important part of the framework for hydraulic-structure design and flood-plain management. Annual peak flows measured at U.S. Geological Survey streamgages are used to compute flood-frequency estimates at those streamgages. However, flood-frequency estimates also are needed at ungaged stream locations. A process known as regionalization was used to develop regression equations to estimate the magnitude and frequency of floods at ungaged locations. This dataset contains the supporting tables and updated hydrologic region boundaries used in the 2017 flood-frequency study for Georgia, South Carolina, and North Carolina.
Reliable estimates of the magnitude and frequency of floods are an important part of the framework for hydraulic-structure design and flood-plain management in Georgia, South Carolina, and North Carolina (study area). Flood-frequency estimates also are needed at ungaged stream locations. A process known as regionalization was used to develop regression equations to estimate the magnitude and frequency of floods at ungaged locations in the study area. The previous update to rural flood frequency estimates in the study area was published using annual peak-flow data through 2006. This updated study utilizes newer methods outlined in Bulletin 17C and newly developed regional skew to estimate the magnitude and frequency...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.