Skip to main content

Person

Alan L Flint

thumbnail
This data set includes: 1) A shapefile of the Humboldt Bay Eel River (HBER) 13 sub watersheds, 2) A shape file of the streamflow gages used in calibration, and 3) Daily Basin Characterization Model (BCM) model climate inputs (minimum and maximum air temperature, precipitation, and potential evapotranspiration) and outputs of recharge and runoff for the year 2010 used to develop streamflow estimates at 12 gage locations.
The impacts of different emission levels and climate change conditions to landscape-scale natural vegetation could have large repercussions for ecosystem services and environmental health. We forecast the risk-reduction benefits to natural landscapes of lowering business-as-usual greenhouse gas emissions by comparing the extent and spatial patterns of climate exposure to dominant vegetation under current emissions trajectories (Representative Concentration Pathway, RCP8.5) and envisioned Paris Accord target emissions (RCP4.5). This comparison allows us to assess the ecosystem value of reaching targets to keep global temperature warming under 2°C. Using 350,719 km2 of natural lands in California, USA, and the mapped...
This dataset consists of raster geotiff outputs of 30-year average annual land use and land cover transition probabilities for the California Central Valley modeled for the period 2011-2101 across 5 future scenarios. The full methods and results of this research are described in detail in “Integrated modeling of climate, land use, and water availability scenarios and their impacts on managed wetland habitat: A case study from California’s Central Valley” (2021). Land-use and land-cover change for California's Central Valley were modeled using the LUCAS model and five different scenarios were simulated from 2011 to 2101 across the entirety of the valley. The five future scenario projections originated from the four...
This spreadsheet dataset (.csv file) contains annual land-use and land cover area in square kilometers (km2) by scenario, timestep, WEAP hydrologic zone, and 4 sub-regions within the broader California Central Valley, modeled using the LUCAS ST-Sim for the period 2011-2101 across 5 future scenarios. Four of the scenarios were developed as part of the Central Valley Landscape Conservation Project. The 4 original scenarios include a Bad-Business-As-Usual (BBAU; high water, poor management), California Dreamin’ (DREAM; high water availability, good management), Central Valley Dustbowl (DUST; low water availability, poor management), and Everyone Equally Miserable (EEM; low water availability, good management). These...
This dataset consists of raster geotiff and tabular outputs of annual map projections of land use and land cover for the California Central Valley for the period 2011-2101 across 5 future scenarios. Four of the scenarios were developed as part of the Central Valley Landscape Conservation Project. The 4 original scenarios include a Bad-Business-As-Usual (BBAU; high water, poor management), California Dreamin’ (DREAM; high water, good management), Central Valley Dustbowl (DUST; low water, poor management), and Everyone Equally Miserable (EEM; low water, good management). These scenarios represent alternative plausible futures, capturing a range of climate variability, land management activities, and habitat restoration...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.