Skip to main content

Person

Christine M Albano

thumbnail
The ecologically-relevant geophysical (ERGo) landforms dataset is a comprehensive classification of landforms based on hillslope position and dominant physical processes that covers most of North America. Four hillslope positions form a natural sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoulders), lower slopes (foot slopes), and valley bottoms (toe slopes). The position within each of these hillslopes as a function of solar orientation to reflect how ecological processes (especially soil moisture and evapotranspiration) are influenced by insolation. Also included are very flat (i.e. areas <2°) or very steep (i.e. “cliffs” >50°). We provide these data here at 30 m resolution,...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/conl.12322/full): Under rapid landscape change, there is a significant need to expand and connect protected areas (PAs) to prevent further loss of biodiversity and preserve ecological functions across broad geographies. We used a model of landscape resistance and electronic circuit theory to estimate patterns of ecological flow among existing PAs in the western United States. We applied these results to areas previously identified as having high conservation value to distinguish those best positioned to maintain and enhance ecological connectivity and integrity. We found that current flow centrality was highest and effective resistance lowest in areas that...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/cobi.12505/abstract): Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation-planning process. By doing so, it may be possible...
Abstract: Alaska’s national parks draw millions of people annually to enjoy wildlife, breathtaking scenery, and recreational adventure. Visitor use is highly seasonal and occurs primarily during the summer months when temperatures are warm and daylight is long. Climate is an important consideration when planning a trip to Alaska’s national parks because of the great distances and associated costs of travel for many visitors. As a result of projected climate warming, peak visitor season of use in Alaska’s national parks may expand. To examine the potential effects of warming climate on park visitor season of use, we used regression analyses to quantify the relationship between historical (1980–2009) visitor use and...
Abstract (from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143619): Key to understanding the implications of climate and land use change on biodiversity and natural resources is to incorporate the physiographic platform on which changes in ecological systems unfold. Here, we advance a detailed classification and high-resolution map of physiography, built by combining landforms and lithology (soil parent material) at multiple spatial scales. We used only relatively static abiotic variables (i.e., excluded climatic and biotic factors) to prevent confounding current ecological patterns and processes with enduring landscape features, and to make the physiographic classification more interpretable...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.