Skip to main content

Person

Randall J Hunt

Research Hydrologist

Email: rjhunt@usgs.gov
Office Phone: 608-821-3847
Fax: 608-821-3817
ORCID: 0000-0001-6465-9304

Location
One Gifford Pinchot Drive , Madison WI
53726
thumbnail
Airborne electromagnetic (AEM) and magnetic survey data were collected during March 2022 over a distance of 2,574.6 line kilometers in southeast and southwest Wisconsin. These data were collected in support of an effort to improve estimates of depth to bedrock through a collaborative project between the U.S. Geological Survey (USGS), Wisconsin Department of Agriculture, Trade, and Consumer Protection (DATCP), and Wisconsin Geological and Natural History Survey (WGNHS). Data were acquired by SkyTEM Canada Inc. with the SkyTEM 304M time-domain helicopter-borne electromagnetic system together with a Geometrics G822A cesium vapor magnetometer. The survey was acquired at a nominal flight height of 30 - 40 meters (m)...
thumbnail
PEST++ Version 5 software release. This release includes ASCII format C++11 source code, precompiled binaries for windows 10 and linux, and inputs files the example problem shown in the report
thumbnail
Six hypothetical 1-dimensional models are used to verify and demonstrate new unsaturated-zone heat transport functionality added to MT3D-USGS (version 1.1.0). Because the governing equations describing groundwater solute transport and heat transport have a similar form, MT3D-USGS may be applied to heat transport problems. Published examples of MT3DMS, from which MT3D-USGS is derived, as a heat transport modeling tool have previously been limited to the saturated zone. However, with the publication of MT3D-USGS which added unsaturated zone solute transport capabilities, some additional support (i.e., new source code) is necessary to enable its use as a heat transport simulator where the unsaturated zone also is going...
thumbnail
We deployed a sampler to characterize water quality from a household well tapping a shallow fractured dolomite aquifer in northeast Wisconsin. The sampler was deployed from January to May 2017, and monitored temperature, nitrate, chloride, specific conductance, and fluorescent dissolved organic matter on a minute time step; water was directed to sequential microbial filters during three recharge periods that ranged from 5 to 20 days. Results from the automated sampler demonstrate the dynamic nature of the household water quality, especially with regard to microbial targets, which were shown to vary 1 to 2 orders of magnitude during a single sampling event. We believe assessments of pathogen occurrence and concentration,...
thumbnail
The existing three-dimensional groundwater flow model (MODFLOW-2005) of the Mississippi Embayment Regional Aquifer system (MERAS), South-Central United States, was updated with: 1) higher stream density; 2) more spatially refined recharge; 3) better estimates of water use; 4) more recent time period simulated; 5) more realistic storage conceptualization; and 6) more robust handling of dry nodes through use of MODFLOW-NWT. For this study, the MODFLOW-NWT groundwater flow model was used to evaluate four parameter estimation algorithms with lower computational burdens. This work was performed to update the previous version of the MERAS groundwater flow model for decision making in the Mississippi Alluvial Plain (MAP),...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.