Skip to main content

Person

Perry M Jones

thumbnail
To describe calling activity of Pseudacris crucifer in relation to temperature, precipitation, and wetland water levels, we programmed an acoustic recorder (Wildlife Acoustics) to sample seasonal amphibian calls remotely at study site SC4DAI2 in the St. Croix National Scenic Riverway from 2008 to 2012. We programmed the recorder to sample for five minutes at the top of every hour of every day from late winter/early spring through late summer. We used the Songscape option in Songscope software to generate annual summaries of all of our acoustic samples from SC4DAI2. These summaries included a median dB level for each prescribed frequency within each recording. Pseudacris crucifer, the spring peeper, inhabited SC4DAI2...
thumbnail
Reactive nitrogen is transported from the atmosphere to the landscape as wet and dry deposition that contributes to annual nitrogen loads to the Chesapeake Bay. Estimates of atmospheric inorganic nitrogen deposition to the Chesapeake Bay watershed during 1950 to 2050 are presented, and are based on field measurements, model simulations, statistical relations, and surrogate constituents used for estimates. Wet atmospheric nitrogen deposition has generally been quantified from weekly precipitation sample collections, whereas dry atmospheric nitrogen deposition has been simulated by a model at an hourly time step.
thumbnail
This groundwater-flow model archive/data release contains the model input and output files for 1) edited versions of four of the five NAWQA steady- state, inset MODFLOW-NWT models of regional model of Lake Michigan Basin (https://doi.org/10.3133/sir20185038) and 2) general models simulating the same four basins as the four inset models. Two HUC8 basins in the lower peninsula of Michigan (Kalamazoo (KALA) and Boardman-Charlevoix (BOARD) basins) and two HUC8 basins in Wisconsin (Upper Fox (UFOX) and Manitowoc-Sheboygan (MANI) basins) are represented in the inset and genera-simulation models. The inset models are designed to serve as a training area for metamodels to estimate groundwater age in glacial wells. The construction...
thumbnail
This U.S. Geological Survey data release contains datasets that combine past data with future projections of nitrogen sources and nitrogen export to the Chesapeake Bay watershed for the years 1950-2050. To help understand the effect of human and environmental changes over this time period, data for nitrogen sources from wastewater, agricultural fertilizer and manure, and atmospheric deposition are combined with datasets of population and land use. These datasets were used in conjunction with a previously calibrated SPAtially Referenced Regression On Watershed attributes (SPARROW) modeling tool to estimate the mean annual loads of total nitrogen to the Chesapeake Bay and nontidal stream reaches in the watershed at...
Tags: Chesapeake, Chesapeake Bay watershed, Delaware, District of Columbia, Environmental Health, All tags...
thumbnail
To better understand relations of annual calling phenophases for Pseudacris crucifer, and of the first calls of the season for Hyla chrysoscelis/versicolor, to the timing of the start of the calling season, we compared these dynamics for six wetlands in the St. Croix National Scenic Riverway from 2008 to 2012. We installed an acoustic recorder at each site prior to the start of each calling season and programmed it to record for five minutes at the top of every hour until late summer. We then used the Songscape option in Songscope software to generate annual summaries of all acoustic files recorded at each site. We created contour plots of the summarized median dB values across bandwidths in each recording and then...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.