Skip to main content

Person

Diane L Waller

Research Fish Biologist

Email: dwaller@usgs.gov
Office Phone: 608-781-6282
Fax: 608-783-6066
ORCID: 0000-0002-6104-810X

Location
2630 Fanta Reed Road
La Crosse , WI 54603
US
We applied Zequanox using a custom-engineered, boat mounted application system to replicated 0.30 Hectare plots within a small inland lake. The objectives of these applications were to determine if uncontained, open-water Zequanox applications could effectively control zebra mussel populations and protect native unionid mussel populations within zebra mussel infested systems. The datasets included are as follows: Exposure Water Chemistry Hardness and Alkalinity Native Mussel Sonde Water Chemistry Zebra Mussel Density Zebra Mussel Length Zebra Mussel Mortality Zequanox Concentration ShapeFiles: PLOTS, UNIONID, ZEQUANOX CONCENTRATION, ZM_DENSITY, ZM_MORTALITY
thumbnail
The diagnosis of bacterial disease in freshwater unionid mussels has been hindered by a lack of baseline information regarding the microbial communities associated with these animals. In this study, we cultured and identified bacteria from the hemolymph of stable mussel populations from the upper Mississippi River basin and compared results to mussel populations associated with a mortality event in the Clinch River, VA and TN. Several bacterial genera were consistently identified across mussel species and locations, appearing to be part of the natural bacterial flora. One noteworthy isolate was identified from the Clinch River. Yokenella regensbergei was found with relatively high prevalence during the mortality...
thumbnail
Control technology for dreissenid mussels (Dreissena polymorpha and D. bugensis) currently relies heavily on chemical molluscicides that can be both costly and ecologically harmful. There is a need to develop more environmentally neutral control tools to manage dreissenid mussels, particularly in cooler water. Previously, carbon dioxide (CO2) showed selective toxicity for Zebra mussels, relative to unionids, when applied in cool water (12 °C). Carp-Carbon Dioxide (carbon dioxide, CO2) is registered as a pesticide by the U.S. Environmental Protection Agency (EPA) for deterrence of Asian carp and to control aquatic nuisance species when applied under ice (USEPA 2019). The current registration would allow the use of...
Carbon dioxide has shown promise as a tool to control movements of invasive Asian carps. We evaluated lethal and sublethal responses of juvenile fat mucket (Lampsilis siliquoidea) mussels to carbon dioxide concentrations (43–269 mg/L, mean concentration) that are effective for deterring carp movement. The 28-d LC50 value (lethal concentration to 50% of the mussels) was 87.0 mg/L (95% confidence interval, CI 78.4–95.9) and at 16-d post-exposure was 76.0 mg/L (95% CI 62.9–90.3). A proportional hazards regression model predicted that juveniles could not survive CO2 concentrations >160 mg/L for more than 2 weeks or >100 mg/L CO2 for more than 30 days. Mean daily shell growth was significantly lower for mussels that...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.