Skip to main content

Person

Jianwu Tang

This dataset is the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3800 observations representing 27 temperature manipulation studies, spanning nine biomes and nearly two decades of warming experiments. Data for this study were obtained from a combination of unpublished data and published literature values. We find that although warming increases soil respiration rates, there is limited evidence for a shifting respiration response with experimental warming. We also note a universal decline in the temperature sensitivity of respiration at soil temperatures >25°C. This dataset includes 3817 observations, from control (n=1812), first (i.e., lowest or sole) level...
thumbnail
Advancing our mechanistic understanding of ecosystem responses to climate change is critical to improve ecological theories, develop predictive models to simulate ecosystem processes, and inform sound policies to manage ecosystems and human activities. Manipulation of temperature in the field, or the “ecosystem warming experiment,” has proved to be a powerful tool to understand ecosystem responses to changes in temperature. No comprehensive synthesis has been conducted since the last one more than 10 years ago. A new synthetic analysis is critically needed to advance our understanding of ecosystem responses to warming, to highlight experimental artifacts and appropriate interpretations, and to guide development...
thumbnail
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted vast areas of coastal wetlands to tidal exchange. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here we present measurements of net ecosystem exchange of carbon dioxide (CO2) and methane, along...
thumbnail
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted vast areas of coastal wetlands to tidal exchange. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here we present measurements of net ecosystem exchange of carbon dioxide (CO2) and methane, along...
thumbnail
The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature...
Categories: Publication; Types: Citation
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.