|
Resilience science provides a conceptual framework and methodology for quantitatively assessing the ability of a system to remain in a particular state. Probable non-linear ecological responses to global change, including climate change, require a clear framework for understanding and managing resilience. However, much of the resilience research to date has been qualitative in nature, and frameworks developed for the implementation of resilience science have been either vague or focused on the social component of social-ecological systems. Attempts to quantify resilience and operationalize the concept include the cross-scale resilience model, discontinuity theory and the early detection of leading indicators of...
|
The cross‐scale resilience model suggests that system level ecological resilience emerges from the distribution of species’ functions within and across the spatial and temporal scales of a system. It has provided a quantitative method for calculating the resilience of a given system, and so has been a valuable contribution to a largely qualitative field. As it is currently laid out, the model accounts for the spatial and temporal scales at which environmental resources and species are present and the functional roles species play, but does not inform us about how much resource is present, or how much function is provided. In short, it does not account for abundance in the distribution of species and their functional...
|
Human impacts on the environment are multifaceted and can occur across distinct spatiotemporal scales. Ecological responses to environmental change are therefore difficult to predict, and entail large degrees of uncertainty. Such uncertainty requires robust tools for management to sustain ecosystem goods and services and maintain resilient ecosystems. We propose an approach based on discontinuity theory that accounts for patterns and processes at distinct spatial and temporal scales, an inherent property of ecological systems. Discontinuity theory has not been applied in natural resource management and could therefore improve ecosystem management because it explicitly accounts for ecological complexity. Synthesis...
|
The concept of panarchy provides a framework that characterizes complex systems of people and nature as dynamically organized and structured within and across scales of space and time. It has been more than a decade since the introduction of panarchy. Over this period, its invocation in peer-reviewed literature has been steadily increasing, but its use remains primarily descriptive and abstract. Here, we discuss the use of the concept in the literature to date, highlight where the concept may be useful, and discuss limitations to the broader applicability of panarchy theory for research in the ecological and social sciences. Finally, we forward a set of testable hypotheses to evaluate key propositions that follow...
|
Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory-based method, on both terrestrial and aquatic animal data (U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning...
|
|