Skip to main content

Person

Joseph Barsugli

Climate policy developers and natural resource managers frequently desire high-resolution climate data to prepare for future effects of climate change. But they face a long-standing problem: the vast majority of climate models have been run at coarse resolutions—from hundreds of kilometers in global climate models (GCMs) down to 25–50 kilometers in regional climate models (RCMs).
Evaporative demand (E0) both drives and responds to droughts based on interactions across the land surface-atmosphere interface, and can be exploited to signal agricultural, hydrologic, and ecological droughts. In this chapter, we argue that using a fully physically based measure of E0 moves the drought community toward a more complete understanding of drought processes that will enhance its abilities with regard to early warning and drought monitoring in the present day and drought-risk assessment under future climate change scenarios. We examine regional characteristics in E0 and their behavior during droughts in the recent historical period across different hydroclimates. We review physical mechanisms driving...
Categories: Publication; Types: Citation
Abstract (from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174045): Several studies have projected increases in drought severity, extent and duration in many parts of the world under climate change. We examine sources of uncertainty arising from the methodological choices for the assessment of future drought risk in the continental US (CONUS). One such uncertainty is in the climate models’ expression of evaporative demand (E0), which is not a direct climate model output but has been traditionally estimated using several different formulations. Here we analyze daily output from two CMIP5 GCMs to evaluate how differences in E0 formulation, treatment of meteorological driving data, choice of GCM,...
Landscape Evaporative Response Index (LERI) is remotely-sensed high-resolution information of the evaporative response from the land in near real time. LERI assesses anomalies in actual evapotranspiration (ETa), as percentiles, across the Contiguous US and northern Mexico at a 1-km spatial resolution. LERI is based on the ETa data produced by the U. S. Geological Survey using the operational Simplified Surface Energy Balance (SSEBop) model. SSEBop combines evapotranspiration fraction generated from remotely sensed MODIS thermal imagery, acquired every 8 days, with climatological atmospheric evaporative demand. To quantify LERI, a rank-based, non-parametric method is used to estimate percentiles of the SSEBop ETa,...
Suppose you are a city planner, regional water manager, or wildlife conservation specialist who is asked to include the potential impacts of climate variability and change in your risk management and planning efforts. What climate information would you use? The choice is often regional or local climate projections downscaled from global climate models (GCMs; also known as general circulation models) to include detail at spatial and temporal scales that align with those of the decision problem. A few years ago this information was hard to come by. Now there is Web-based access to a proliferation of high-resolution climate projections derived with differing downscaling methods.
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.