Skip to main content

Person

Lukasz M Niemoczynski

Hydrologist

Email: lniemoczynski@usgs.gov
Office Phone: 609-771-3926
Fax: 609-771-3915

Location
3450 Princeton Pike
Suite 110
Lawrenceville , NJ 08648
US
thumbnail
This dataset contains field topographic and bathymetric data measured during February to April 2019 across oyster castles and mud flats along the Chincoteague Living Shoreline, Virginia, where constructed oyster reefs (CORs, aka oyster castles) were installed to protect the shoreline and enhance habitat for oyster and other species.
thumbnail
This Data Release contains field topo-bathymetric survey data in a selected saltmarsh shoreline along Gandys Beach, New Jersey, where constructed oyster reefs (CORs, aka oyster castles) were installed to protect the shoreline and enhance habitat for oyster and other species. Oyster castles were constructed as a part of a living shoreline project along Gandys Beach in 2016 in response to the damage by Hurricane Sandy in 2012. Wave, current and sediment data were collected, and field topographic and bathymetric surveys were conducted from January 2018 to April 2018. Fine resolution topographic and bathymetric data is needed to assess shoreline structure effectiveness in terms of wave and current energy reduction,...
thumbnail
Digital flood-inundation maps for coastal communities within Monmouth County in New Jersey were created by water surfaces generated by an Advanced Circulation hydrodynamic (ADCIRC) and Simulating Waves Nearshore (SWAN) model from the Federal Emergency Management Agency (FEMA) Region II coastal analysis and mapping study (Federal Emergency Management Agency, 2014). Six synthetic modeled tropical storm events from a library of 159 events were selected based on parameters including landfall location or closest approach location, maximum wind speed, central pressure, and radii of winds. Two storm events were selected for the tide gage providing two "scenarios" and accompanying inundation-map libraries. The contents...
thumbnail
Digital flood-inundation maps for coastal communities within Ocean County in New Jersey were created by water surfaces generated by an Advanced Circulation hydrodynamic (ADCIRC) and Simulating Waves Nearshore (SWAN) model from the Federal Emergency Management Agency (FEMA) Region II coastal analysis and mapping study (Federal Emergency Management Agency, 2014). Six synthetic modeled tropical storm events from a library of 159 events were selected based on parameters including landfall location or closest approach location, maximum wind speed, central pressure, and radii of winds. Two storm events were selected for the tide gage providing two "scenarios" and accompanying inundation-map libraries. The contents of...
thumbnail
Digital flood-inundation maps for coastal communities within Ocean County in New Jersey were created by water surfaces generated by an Advanced Circulation hydrodynamic (ADCIRC) and Simulating Waves Nearshore (SWAN) model from the Federal Emergency Management Agency (FEMA) Region II coastal analysis and mapping study (Federal Emergency Management Agency, 2014). Six synthetic modeled tropical storm events from a library of 159 events were selected based on parameters including landfall location or closest approach location, maximum wind speed, central pressure, and radii of winds. Two storm events were selected for the tide gage providing two "scenarios" and accompanying inundation-map libraries. The contents of...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.