Skip to main content

Person

Katherine J Knierim

Hydrologist

Email: kknierim@usgs.gov
Office Phone: 501-228-3600
ORCID: 0000-0002-5361-4132

Location
401 Hardin Road
Little Rock , AR 72211-3528
US
thumbnail
Groundwater from the Mississippi River Valley alluvial aquifer (MRVA) is a vital resource for agriculture and drinking-water supplies in the central United States. Water availability can be limited in some areas of the aquifer by high concentrations of trace elements, including manganese and arsenic. Boosted regression trees, a type of ensemble-tree machine-learning method, were used to predict manganese concentration and the probability of arsenic concentration exceeding a 10 µg/L threshold throughout the MRVA. Explanatory variables for the BRT models included attributes associated with well location and construction, surficial variables (such as hydrologic position and recharge), variables extracted from a MODFLOW-2005...
thumbnail
Groundwater is a vital resource in the Mississippi embayment of the central United States. An innovative approach using machine learning (ML) was employed to predict groundwater salinity—including specific conductance (SC), total dissolved solids (TDS), and chloride (Cl) concentrations—across three drinking-water aquifers of the Mississippi embayment. A ML approach was used because it accommodates a large and diverse set of explanatory variables, does not assume monotonic relations between predictors and response data, and results can be extrapolated to areas of the aquifer not sampled. These aspects of ML allowed potential drivers and sources of high salinity water that have been hypothesized in other studies to...
thumbnail
Groundwater is a vital resource in the Mississippi embayment of the central United States. An innovative approach using machine learning (ML) was employed to predict groundwater salinity—including specific conductance (SC), total dissolved solids (TDS), and chloride (Cl) concentrations—across three drinking-water aquifers of the Mississippi embayment. A ML approach was used because it accommodates a large and diverse set of explanatory variables, does not assume monotonic relations between predictors and response data, and results can be extrapolated to areas of the aquifer not sampled. These aspects of ML allowed potential drivers and sources of high salinity water that have been hypothesized in other studies to...
thumbnail
Groundwater is a vital resource to the Mississippi embayment region of the central United States. Regional and integrated assessments of water availability that link physical flow models and water quality in principal aquifer systems provide context for the long-term availability of these water resources. An innovative approach using machine learning was employed to predict groundwater pH across drinking water aquifers of the Mississippi embayment. The region includes two principal regional aquifer systems; the Mississippi River Valley alluvial (MRVA) aquifer and the Mississippi embayment aquifer system that includes several regional aquifers and confining units. Based on the distribution of groundwater use for...
thumbnail
Of the approximately 6.6 million people living in the Mississippi embayment (MISE) region in the central United States, approximately 65 percent rely on groundwater for their drinking water (Dieter, Linsey, and others, 2017). Regional assessments of water quality in principal aquifer systems provide context for the long-term availability of these water resources for drinking-water supplies. To assess the current (2018) status of water quality in MISE in relation to drinking water supplies, groundwater withdrawal zones used for domestic and public supply were modeled using available groundwater well and hydrogeologic framework data. Three dimensional surfaces were modeled to map the depth zones at which groundwater...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.