Skip to main content

Person

Laurie Alexander

thumbnail
The Upper Missouri River headwaters (UMH) basin (36 400 km2 ) depends on its river corridors to support irrigated agriculture and world-class trout fisheries. We evaluated trends (1984–2016) in riparian wetness, an indicator of the riparian condition, in peak irrigation months (June, July and August) for 158 km2 of riparian area across the basin using the Landsat normalized difference wetness index (NDWI). We found that 8 of the 19 riparian reaches across the basin showed a significant drying trend over this period, including all three basin outlet reaches along the Jefferson, Madison and Gallatin rivers. The influence of upstream climate was quantified using per reach random forest regressions. Much of the interannual...
thumbnail
Abstract We describe a collection of aquatic and wetland habitats in an inland landscape, and their occurrence within a terrestrial matrix, as a “freshwater ecosystem mosaic” (FEM). Aquatic and wetland habitats in any FEM can vary widely, from permanently ponded lakes, to ephemerally ponded wetlands, to groundwater‐fed springs, to flowing rivers and streams. The terrestrial matrix can also vary, including in its influence on flows of energy, materials, and organisms among ecosystems. Biota occurring in a specific region are adapted to the unique opportunities and challenges presented by spatial and temporal patterns of habitat types inherent to each FEM. To persist in any given landscape, most species move to recolonize...
Categories: Publication; Types: Citation
thumbnail
Geographically Isolated Wetlands (GIWs) occur along gradients of hydrologic and ecological connectivity and isolation, even within wetland types (e.g., forested, emergent marshes) and functional classes (e.g., ephemeral systems, permanent systems, etc.). Within a given watershed, the relative positions of wetlands and open-waters along these gradients influence the type and magnitude of their chemical, physical, and biological effects on downgradient waters. In addition, the ways in which GIWs connect to the broader hydrological landscape, and the effects of such connectivity on downgradient waters, depends largely upon climate, geology, and relief, the heterogeneity of which expands with increasing scale. Developing...
thumbnail
Abstract Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many landscapes and used to guide restoration efforts, few studies have directly quantified the associated wetland storage capacity. Here, we present a novel raster-based approach to quantify both contemporary and potential (i.e., restorable) storage capacities of individual depressional basins across landscapes. We demonstrate the utility of this method by applying it to the Delmarva Peninsula, a region punctuated by both depressional...
Categories: Publication; Types: Citation
thumbnail
Abstract We reviewed the scientific literature on non‐floodplain wetlands (NFWs), freshwater wetlands typically located distal to riparian and floodplain systems, to determine hydrological, physical, and chemical functioning and stream and river network connectivity. We assayed the literature for source, sink, lag, and transformation functions, as well as factors affecting connectivity. We determined NFWs are important landscape components, hydrologically, physically, and chemically affecting downstream aquatic systems. NFWs are hydrologic and chemical sources for other waters, hydrologically connecting across long distances and contributing compounds such as methylated mercury and dissolved organic matter. NFWs...
Categories: Publication; Types: Citation
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.