|
The numerical model is built using an high resolution (1m) idealized domain to test the implementation of lateral retreat formulations in the COAWST modeling framework. The lateral retreat is calculated within the model and is based on lateral wave thrust.
Categories: Data;
Types: NetCDF OPeNDAP Service;
Tags: barotropic_sea_water_x_velocity,
barotropic_sea_water_y_velocity,
coastal processes,
dataset,
mathematical modeling, All tags...
ocean_s_coordinate_g1,
oceans,
sea_surface_height_above_geopotential_datum,
sea_water_potential_temperature,
sea_water_salinity,
sea_water_x_velocity,
sea_water_y_velocity,
service,
time, Fewer tags
|
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate ocean circulation, waves, and sediment transport to study barrier island breaches that occurred during Hurricane Matthew (2016) near Matazas FL, and Hurricane Sandy (2012) at Fire Island, NY. Hurricane Sandy was a Saffir-Simpson Category 2 hurricane that transited the Western Atlantic Ocean relatively far offshore of the US East Coast for five days until turning west to make landfall in New Jersey on 29 October 2012, causing extreme coastal erosion and flooding with destruction to residences and infrastructure along the East coast, particularly in the New York Bight. Maximum...
|
The development of Submerged Aquatic Vegetation (SAV) growth model within the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model leads to a change in SAV biomass. The SAV biomass is computed from temperature, nutrient loading and light predictions obtained from coupled hydrodynamics (temperature), bio-geochemistry (nutrients) and bio-optical (light) models. In exchange, the growth of SAV sequesters or contributes nutrients from the water column and sediment layers. The presence of SAV modulates current and wave attenuation and consequently affects modelled sediment transport. The model of West Falmouth Harbor in Massachusetts, USA was simulated to study the seagrass growth/dieback pattern in a hypothetical...
|
The numerical simulation of estuarine dynamics requires accurate prediction for the transport of tracers such as temperature and salinity. All numerical models introduce two kinds of tracer mixing: 1) by parameterizing the tracer eddy diffusivity through turbulence models leading to a source of physical mixing and 2) discretization of the tracer advection term that leads to numerical mixing. Both physical and numerical mixing vary with the choice of horizontal advection schemes, grid resolution, and time step. We utilize the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model to study the mixing in the model by simulating four idealized cases with three different tracer advection schemes.
|
The idealized test domain is utilized to study vertical tracer mixing without the presence of advection terms. The tracer starts to mix under the application of a surface stress. The model results are intended to be accessed from the THREDDS data server available through the related external resources. The model NetCDF files are stored on this trusted digital repository to ensure backup and longevity of these data.
Tags: barotropic_sea_water_x_velocity,
barotropic_sea_water_y_velocity,
coastal processes,
dataset,
mathematical modeling, All tags...
ocean_s_coordinate_g1,
oceans,
sea_surface_height_above_geopotential_datum,
sea_water_potential_temperature,
sea_water_salinity,
sea_water_x_velocity,
sea_water_y_velocity,
service,
time, Fewer tags
|
View more...
|