Skip to main content

Person

Adrienne Marshall

Knowledge of snow cover distribution and disappearance dates over a wide range of scales is imperative for understanding hydrological dynamics and for habitat management of wildlife species that rely on snow cover. Identification of snow refugia, or places with relatively late snow disappearance dates (SDDs) compared to surrounding areas, is especially important as climate change alters snow cover timing and duration. The purpose of this study was to increase understanding of snow refugia in complex terrain spanning the rain-snow transition zone at fine spatial and temporal scales. To accomplish this objective, we used remote cameras to provide relatively high temporal and spatial resolution measurements on snowpack...
Categories: Publication; Types: Citation
thumbnail
Snow conditions are changing dramatically in the mountains of the interior Pacific Northwest, including eastern Washington, northern Idaho, and western Montana. These changes can both benefit and hinder a variety of wildlife species. The timing and extent of seasonal snowpacks, in addition to snow depth, density, and hardness, can impact the ability of wildlife to access forage, their ability to move across the landscape, and their vulnerability to predators, to name a few. In order to respond effectively to changes in snow conditions, wildlife managers need tools to identify areas and promote conditions that maintain late spring and early summer snowpack for some sensitive species. Managers also require an index...
Abstract (from AGU100): In complex terrain, drifting snow contributes to ecohydrologic landscape heterogeneity and ecological refugia. In this study, we assessed the climate sensitivity of hydrological dynamics in a semiarid mountainous catchment in the snow‐to‐rain transition zone. This catchment includes a distinct snow drift‐subsidized refugium that comprises a small portion (14.5%) of the watershed but accounts for a disproportionate amount (modeled average 56%) of hydrological flux generation. We conducted climate sensitivity experiments using a physically based hydrologic model to assess responses of a suite of hydrologic metrics across the watershed. Experiments with an imposed 3.5 °C warming showed reductions...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.