Skip to main content

Person

Robert K Shriver

Droughts are disproportionately impacting global dryland regions where ecosystem health and function are tightly coupled to moisture availability. Drought severity is commonly estimated using algorithms such as the standardized precipitation-evapotranspiration index (SPEI), which can estimate climatic water balance impacts at various hydrologic scales by varying computational length. However, the performance of these metrics as indicators of soil moisture dynamics at ecologically relevant scales, across soil depths, and in consideration of broader scale ecohydrological processes, requires more attention. In this study, we tested components of climatic water balance, including SPEI and SPEI computation lengths, to...
Categories: Publication; Types: Citation
thumbnail
These data were compiled to determine whether transient population dynamics substantially alter population growth rates of sagebrush after disturbance, impede resilience and restoration, and in turn drive ecosystem transformation. Data were collected from 2014-2016 on sagebrush population height distributions at 531 sites across the Great Basin that had burned and were subsequently reseeded by the BLM. These data include field data on sagebrush density in 6 size classes and site attributes (seeding year, sampling year, random site designation, elevation, seeding rate). Also included are modeled spring soil moisture data at each site from the year of seeding to sampling. This data release includes associated software...
Pinyon–juniper (PJ) woodlands are an important component of dryland ecosystems across the US West and are potentially susceptible to ecological transformation. However, predicting woodland futures is complicated by species-specific strategies for persisting and reproducing under drought conditions, uncertainty in future climate, and limitations to inferring demographic rates from forest inventory data. Here, we leverage new demographic models to quantify how climate change is expected to alter population demographics in five PJ tree species in the US West and place our results in the context of a climate adaptation framework to resist, accept, or direct ecological transformation. Two of five study species, Pinus...
Categories: Publication; Types: Citation
thumbnail
These data were compiled to help understand how climate change may impact dryland pinyon-juniper ecosystems in coming decades, and how resource management might be able to minimize those impacts. Objective(s) of our study were to model the demographic rates of PJ woodlands to estimate the areas that may decline in the future vs. those that will be stable. We quantified populations growth rates across broad geographic areas, and identified the relative roles of recruitment and mortality in driving potential future changes in population viability in 5 tree species that are major components of these dry forests. We used this demographic model to project pinyon-juniper population stability under future climate conditions,...
Categories: Data; Tags: Arizona, Botany, California, Colorado, Ecology, All tags...
thumbnail
These data consist of environmental covariates and estimated plot-level mortality of ponderosa pine trees. Environmental covariates include growing season temperature and soil moisture, and values are summarized into long-term mean conditions, and anomalies observed between forest inventory sampling events for each plot. Data also include plot locations (with uncertainty introduced by the US Forest Service to maintain private property rights), plot basal area, and several variables related to estimated mortality rate of ponderosa pine trees under various assumptions about basal area conditions.
Categories: Data; Tags: Arizona, Botany, California, Climatology, Colorado, All tags...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.