Skip to main content

Person

Delwyn S Oki

Hydrologist

Email: dsoki@usgs.gov
Office Phone: 808-690-9598
Fax: 808-690-9599
ORCID: 0000-0002-6913-8804
thumbnail
This data release contains the source code, executable file, and example files for WATRMod, a Water-budget Accounting for Tropical Regions Model code that is documented in U.S. Geological Survey Open-File Report 2022-1013 available at https://doi.org/10.3133/ofr20221013. The source code is written in the Fortran computer language. The model source code was compiled using Intel(R) Visual Fortran Intel(R) 64 for Windows, version 11.0.061, Copyright(C) 1985-2008. WATRMod can be executed (run) in a Command window by typing the command WATRMod1 (preceded by the appropriate path to the file WATRMod1.exe if the file WATRMod1.exe does not reside in the folder from which the command is issued) at the prompt; the file WATRMOD.FIL...
The Water-budget Accounting for Tropical Regions Model (WATRMod) code was used for Kauaʻi, Oʻahu, Molokaʻi, Maui, and the Island of Hawaiʻi to estimate the spatial distribution of groundwater recharge, soil moisture, evapotranspiration, and climatic water deficit for a set of water-budget scenarios. The scenarios included historical and future drought conditions, and a land-cover condition where shrubland and forest within the cloud zone were converted to grassland. For the historical drought condition, island-wide mean annual recharge estimates range from a decrease of 30 percent (239 million gallons per day [Mgal/d]) for Kauaʻi to a decrease of 39 percent (2,706 Mgal/d) for the Island of Hawaiʻi, relative to the...
Categories: Publication; Types: Citation
thumbnail
Major floods in Southeast Alaska and Hawaiʻi that potentially threaten life, property, and culturally significant resources and ecosystems are caused by mechanisms related to intense precipitation for both locations as well as snow melt-based processes for Alaska. Small, high-gradient, and heavily vegetated watersheds with direct contribution to the ocean are common in both locations. To understand how climate change may affect flooding in these regions, an analysis of the underlying mechanisms that cause flooding is needed. The scope of this study includes an analysis of annual peak-streamflow records from long-term streamgages in Southeast Alaska and Hawaiʻi to determine whether the main flood-producing mechanisms...
Demand for freshwater in the State of Hawaiʻi is expected to increase by roughly 13 percent from 2020 to 2035. Groundwater availability in Hawaiʻi is affected by a number of factors, including land cover, rainfall, runoff, evapotranspiration, and climate change. To evaluate the availability of fresh groundwater under projected future-climate conditions, estimates of groundwater recharge are needed. A water-budget model with a daily computation interval was used to estimate the spatial distribution of groundwater recharge for Kauaʻi, Oʻahu, Molokaʻi, Lānaʻi, Maui, and the Island of Hawaiʻi for recent climate conditions and three future-climate scenarios. Climate conditions from 1978 to 2007 were used as the reference...
Categories: Publication; Types: Citation
Drought is a signifcant climate feature in Hawai‘i and the U.S.-Affliated Pacifc Islands (USAPI), at times causing severe impacts across multiple sectors. Below-average precipitation anomalies are often accompanied by higher-than-average temperatures and reduced cloud cover. The resulting higher insolation and evapotranspiration can exacerbate the effects of reduced rainfall. These altered meteorological conditions lead to less soil moisture. Depending on the persistence and severity of the conditions, drier soil can cause plant stress, affecting both agricultural and natural systems. Hydrological effects of drought include reductions in streamfow, groundwater recharge, and groundwater discharge to springs, streams,...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.