Skip to main content

Organization

Earth System Processes Division
thumbnail
Water-quality data for groundwater samples collected from 4,824 sites between 1991 through 2018, and ancillary data and information on sampled wells and principal aquifers, were used to assess the occurrence and distribution of strontium in U.S. groundwater from 32 principal aquifers. This data release includes one tab-delimited text file detailing these data. Table: Chemical data from the U.S. Geological Survey National Water Information System and ancillary data considered for assessment of strontium concentration in U.S. groundwater.
thumbnail
Concentrations of inorganic constituents, dissolved organic carbon (DOC), tritium, per- and polyfluoroalkyl substances (PFAS), volatile organic compounds (VOCs), and pharmaceuticals were measured in groundwater samples collected from 254 wells in 2019 and 2020. Concentrations of inorganic constituents, DOC, VOCs, and pharmaceuticals were measured at the U.S. Geological Survey (USGS) National Water Quality Laboratory in Lakewood, Colorado. Concentrations of tritium were measured at the USGS Tritium Laboratory in Menlo Park, California. Concentrations of PFAS were measured at SGS Laboratory in Orlando, Florida. In addition, several geospatial parameters were determined, including: percentages of selected land uses...
thumbnail
Benthic diatom assemblages are known to be indicative of water quality but have yet to be widely adopted in biological assessments in the United States due to several limitations. Our goal was to address some of these limitations by developing regional multi-metric indices (MMIs) that are robust to inter-laboratory taxonomic inconsistency, adjusted for natural covariates, and sensitive to a wide range of anthropogenic stressors. We aggregated bioassessment data from two national-scale federal programs and used a data-driven analysis in which all-possible combinations of 2-7 metrics were compared for three measures of performance. The datasets in this release support the Carlisle, et al. 2022 report cited herein....
thumbnail
Areas of groundwater discharge are hydrologically and ecologically important, and yet are difficult to predict at the river network scale. Thermal infrared imagery can be used to identify areas of groundwater discharge based on an observed temperature anomaly (colder during the late summer or warmer during the late winter). The thermal images, direct temperature measurements (11 cm depth) and discharge zone (seep) location information in this data release were collected as part of a study to evaluate and improve predicted spatial patterns of groundwater discharge. The data were collected during the late summer / early fall of 2017 along selected river reaches in the Farmington River watershed (Connecticut and Massachusetts)....
thumbnail
Note: this data release has been depecrated. Find the updated version here: https://doi.org/10.5066/P9X8RUBW. Electromagnetic (EM) geophysical methods provide information about the bulk electrical conductivity of the subsurface. EM data has been widely used to investigate aquifers and geologic structures. In the following study, the United States Geological Survey conducted a boat-towed, waterborne transient electromagnetic (FloaTEM) survey to examine conductivity within the subsurface of the Delaware River channel. These conductive zones determine the location of the groundwater freshwater/saltwater interface within the Delaware River, downstream from Wilmington, DE. The FloaTEM system transmits a primary electrical...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.