Skip to main content

Person

James E Reddy

Physical Scientist

New York Water Science Center

Email: jreddy@usgs.gov
Office Phone: 607-753-9391
ORCID: 0000-0002-6998-7267

Location
425 Jordan Rd
Troy , NY 12180
US

Supervisor: Martyn J Smith
thumbnail
This data release contains input data used in model development and TIF raster files used to predict the probability of high arsenic (As) and high manganese (Mn) in groundwater within the glacial aquifer system in the northern United States. Input data include measured As and Mn concentrations at groundwater wells, and associated predictor variable data. The probability of high As and high Mn was predicted using boosted regression tree methods using the gbm package in R version 4.0.0. The response variables for individual models were the occurrence of: (1) As >10 µg/L, and (2) Mn >300 µg/L. Water-quality data were compiled from three sources, as described in Wilson and others (2019): a compilation of data from numerous...
thumbnail
A digital representation of closed depression features overlying and adjacent to New York’s carbonate-bedrock aquifers. Includes closed depressions that are both natural and anthropogenic in origin. The features were derived from a digital contour database obtained from https://topotools.cr.usgs.gov/contour_data.php. The original contour dataset was generated from the National Elevation Dataset (NED) and the National Hydrography Dataset (NHD) in a fully automated process. The process is described in U.S. Geological Survey Scientific Investigations Report 2012–5167.
thumbnail
A digital representation of a glacial aquifer map for the northeastern United States (Kontis and others, 2004; http://pubs.er.usgs.gov/publication/pp1415C; Plate 3) has been prepared by staff of the U.S. Geological Survey. Aquifer data was digitally compiled from a georeferenced version of Plate 3, along with supplemental aquifer maps that covered portions of the northeast.
This data release contains input data used in model development and TIF raster files used to predict the probability of low dissolved oxygen (DO) and high dissolved iron (Fe) in groundwater within the glacial aquifer system in the northern continental United States. Input data include measured DO and Fe concentrations at groundwater wells, and associated predictor variable data. The probability of low DO and high Fe was predicted using boosted regression tree methods using the gbm package in R (v. 4.0.0) in RStudio (v. 1.2.5042). The response variables for individual models were the occurrence of: (1) DO ≤0.5 mg/L, (2) DO ≤2 mg/L, and (3) Fe >100 µg/L. Water-quality data were compiled from three sources, as described...
thumbnail
Background: A sequence of gently dipping carbonate bedrock - the Bertie Formation, Akron Dolostone, and Onondaga Limestone crop out along a 2- to5-mile wide band in western and central New York. These bedrock units trend east-west for 250 miles across the State and form extensive carbonate-bedrock aquifers which transmit and yield water from solution-enlarged fractures, bedding planes, and other openings (Olcott, 1995). Bedding planes or sub-horizontal fractures typically are the most enlarged and important water conduits. Karstic features such as sinkholes, swallets, solution channels, and caverns can locally transmit large amounts of surface water into the ground where the groundwater can move quickly and over...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Aquifer Mapping, Aquifer Mapping, Aquifer Mapping, Basin & Hydrogeologic Characterization, Basin & Hydrogeologic Characterization, All tags...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.