Skip to main content

Person

Edward R Schenk

thumbnail
This USGS Data Release represents tabular data for chemical and physical attributes, rates of deposition, erosion, and mineralization of bank and floodplain sediments and soils from five study sites in the Smith Creek watershed between 2012 and 2015. The data release was produced in compliance with the new 'open data' requirements as a way to make the scientific products associated with USGS research efforts and publications available to the public. The dataset consists of 2 separate items: 1. Smith Creek floodplain soils dataset (tabular data) 2. Smith Creek bank soils dataset (tabular data) These data support the following publication: Gillespie, J.L., Noe, G.B., Hupp, C.R., Gellis, A.C., and Schenk, E.R.,...
thumbnail
Input predictor variables and output predictions from statistical modeling of floodplains, streambanks, and streambeds for each NHDPlusV2 stream reach in the Chesapeake Bay and Delaware River watersheds of the U.S. Mid-Atlantic. Random Forest statistical models using either 1) characteristics of upstream drainage area, or 2) characteristics of upstream drainage area (Wieczorek et al. 2018, https://doi.org/10.5066/f7765d7v) and reach geomorphometry (Hopkins et al. 2020, https://doi.org/10.5066/P9RQJPT1), were used to explain and predict spatial variation in measured floodplain and streambank flux of sediment, fine sediment, sediment-C, sediment-N, and sediment-P and rates of geomorphic change, and streambed sediment...
Soil physico-chemistry and phosphate release rated during laboratory flood experiment, for soils collected prior to restoration.
Categories: Data
Phosphate, ammonium, nitrate, and nitrate fluxes to and from the soil surface.
Categories: Data
thumbnail
Predictions from statistical modeling of floodplains, streambanks, and streambeds in the Chesapeake Bay and Delaware River watersheds of the U.S. Mid-Atlantic. Random Forest statistical models using either 1) characteristics of upstream drainage area, or 2) characteristics of upstream drainage area (Wieczorek et al. 2018, https://doi.org/10.5066/f7765d7v) and reach geomorphometry (Hopkins et al. 2020, https://doi.org/10.5066/P9RQJPT1), were used to explain and predict spatial variation in measured floodplain and streambank flux of sediment, fine sediment, sediment-C, sediment-N, and sediment-P and rates of geomorphic change, and streambed sediment characteristics (d50, cover by fine sediment, cover by fine and sand...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.