Skip to main content

Person

Dennis M Staley

Research Physical Scientist

Volcano Science Center

Email: dstaley@usgs.gov
Office Phone: 907-786-7423
ORCID: 0000-0002-2239-3402

Location
Alaska Pacific Univ.Grace Hall
4210 University Drive
Anchorage , AK 99508-4626
US

Supervisor: Matt Haney
This data release includes 2016-2019 soil moisture timeseries for two drainage basins (“Arroyo Seco” and “Dunsmore Canyon”) that burned during the 2009 Station Fire in Los Angeles County, California, USA. The Arroyo Seco (0.01 km2) and Dunsmore Canyon (0.5 km2) drainages include two soil pits, one located near the drainage divide and another near the basin outlet. Following the naming convention established by Smith et al. (2019), we refer to the soil pits near the Arroyo Seco drainage divide and basin outlet as “AS1” and “AS3,” respectively. Similarly, we refer to the soil pits near the Dunsmore Canyon drainage divide and basin outlet as “DC1” and “DC3,” respectively. The coordinates of AS1 and AS3 are, respectively,...
thumbnail
Summary This data release contains postprocessed model output from a simulation of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A simulated displacement wave was generated by rapid motion of unstable material into Barry Arm fjord. We consider the wave propagation in Harriman Fjord and Barry Arm, western Prince William Sound (area of interest and place names depicted in Figure 1). We consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b). As in Barnhart and others (2021c), we used a simulation setup similar to Barnhart and others (2021a, 2021b), but our results differ because we used different topography and bathymetry datasets....
thumbnail
Multiple subaerial landslides adjacent to Prince William Sound, Alaska (for example, Dai and others, 2020; Higman and others, 2023; Schaefer and others, 2024) pose a threat to the public because of their potential to generate ocean waves (Dai and others, 2020; Barnhart and others, 2021; Barnhart and others, 2022) that could impact towns and marine activities. One bedrock landslide on the west side of Barry Arm fjord drew international attention in 2020 because of its large size (~500 M m3) and tsunamigenic potential (Dai and others, 2020). As part of the U.S. Geological Survey response to the detection of the potentially tsunamigenic landslide at Barry Arm, as well as a broader effort to evaluate bedrock landslide...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Alaska, Barry Arm, Barry Arm, Blackstone Bay, Cochrane Bay, All tags...
thumbnail
This data release contains model output from simulations presented in the associated Open-File Report (Barnhart and others, 2021). In this report, we present model results from four simulations (scenarios C-290, NC-290, C-689, NC-689, Table 1) of hypothetical rapid movement of landslides into adjacent fjord water at Barry Arm, Alaska using the D-Claw model (George and Iverson, 2014; Iverson and George, 2014). The basis for the four scenarios is described in Barnhart and others (2021). Table 1. Summary of four considered scenarios including key simulation input parameter values. Simulation input parameters Scenario name and description NC-290 C-290 NC-689 C-689 Symbol Units Description Smaller,...
thumbnail
This data release includes time-series data from a monitoring site located in a small (0.12 km2) drainage basin in the Las Lomas watershed in Los Angeles County, CA, USA. The site was established after the 2016 Fish Fire and recorded a series debris flows in the first winter after the fire. The station is located along the channel at the outlet of the study area (34 9’18.50”N, 117 56’41.33”W, WGS84). The data were collected between November 15, 2016 and February 23, 2017. The data include two types of time series: (1) continuous 1-minute time series of rainfall and flow stage recorded by a laser distance meter suspended over the channel (LasLomasContinuous.csv), and (2) 50-Hz time series of flow stage and flow-induced...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.