|
The Rio Grande cutthroat trout is New Mexico’s state fish; but habitat loss and non-native trout invasions threaten the persistence of this fish throughout the remaining 12% of its historic range. Stakeholders, including state agencies, federal agencies, Tribal nations, Pueblos, and private groups are particularly concerned about the impact that non-native brown trout have on native cutthroat trout. This project will be the first to demonstrate how non-native brown trout negatively affect Rio Grande cutthroat trout populations. The project has two primary objectives: 1) compare the health and characteristics of native Rio Grande Cutthroat Trout in areas both with and without invasive brown trout in cold and warm...
Categories: Project;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: 2018,
CASC,
Completed,
Fish,
Fish, All tags...
Projects by Region,
Rivers, Streams and Lakes,
Rivers, Streams and Lakes,
South Central,
South Central CASC,
Water, Coasts and Ice,
Water, Coasts and Ice,
Wildlife and Plants,
Wildlife and Plants,
invasive species,
production,
temperature, Fewer tags
|
This dataset is a running trend analysis of baseflow from USGS stream gage records from as early as 1911 to 2016 for 23 unregulated streams across the five largest Hawaiian Islands: Kauai, Oʻahu, Molokaʻi, Maui, and Hawaiʻi. First, we separated mean daily flow into direct run‐off and baseflow with the “lfstat” separation procedure in R, which employs the Institute of Hydrology (1980) standard baseflow separation procedure of 5‐day blocks to identify minimum flow, called a turning point. The turning points are then connected to obtain the baseflow hydrograph. For each stream, Sen's slope and Mann–Kendall statistic were calculated incrementally using the R package “trend” to give window sizes from 10‐107 years depending...
|
This dataset is a running trend analysis of runoff from USGS stream gage records from as early as 1911 to 2016 for 23 unregulated streams across the five largest Hawaiian Islands: Kauai, Oʻahu, Molokaʻi, Maui, and Hawaiʻi. First, we separated mean daily flow into direct run‐off and baseflow with the “lfstat” separation procedure in R, which employs the Institute of Hydrology (1980) standard baseflow separation procedure of 5‐day blocks to identify minimum flow, called a turning point. The turning points are then connected to obtain the baseflow hydrograph. For each stream, Sen's slope and Mann–Kendall statistic were calculated incrementally using the R package “trend” to give window sizes from 10‐107 years depending...
|
|