Skip to main content

Andrew D. Richardson

Monitoring vegetation phenology is critical for quantifying climate change impacts on ecosystems. We present an extensive dataset of 1783 site-years of phenological data derived from PhenoCam network imagery from 393 digital cameras, situated from tropics to tundra across a wide range of plant functional types, biomes, and climates. Most cameras are located in North America. Every half hour, cameras upload images to the PhenoCam server. Images are displayed in near-real time and provisional data products, including timeseries of the Green Chromatic Coordinate (Gcc), are made publicly available through the project web page (https://phenocam.sr.unh.edu/webcam/gallery/). Processing is conducted separately for each...
Near surface (i.e., camera) and satellite remote sensing metrics have become widely used indicators of plant growing seasons. While robust linkages have been established between field metrics and ecosystem exchange in many land cover types, assessment of how well remotely-derived season start and end dates depict field conditions in arid ecosystems remain unknown. We evaluated the correspondence between field measures of start (SOS; leaves unfolded and canopy greenness >0) and end of season (EOS) and canopy greenness for two widespread species in southwestern U.S. ecosystems with those metrics estimated from near-surface cameras and MODIS NDVI for five years (2012–2016). Using Timesat software to estimate SOS and...
Scientists gathered at a workshop in Cambridge, Mass., last June to identify opportunities and challenges associated with integrating multiscale, multiplatform streams of data to produce higher-level phenological data products (e.g., models) and applications at a variety of spatial and temporal resolutions.
Accurate models are important to predict how global climate change will continue to alter plant phenology and near-term ecological forecasts can be used to iteratively improve models and evaluate predictions that are made a priori. The Ecological Forecasting Initiative's National Ecological Observatory Network (NEON) Forecasting Challenge, is an open challenge to the community to forecast daily greenness values, measured through digital images collected by the PhenoCam Network at NEON sites before the data are collected. For the first round of the challenge, which is presented here, we forecasted canopy greenness throughout the spring at eight deciduous broadleaf sites to investigate when, where, and for what model...
Categories: Publication; Types: Citation
Vegetation phenology controls the seasonality of many ecosystem processes, as well as numerous biosphere-atmosphere feedbacks. Phenology is also highly sensitive to climate change and variability. Here we present a series of datasets, together consisting of almost 750 years of observations, characterizing vegetation phenology in diverse ecosystems across North America. Our data are derived from conventional, visible-wavelength, automated digital camera imagery collected through the PhenoCam network. For each archived image, we extracted RGB (red, green, blue) colour channel information, with means and other statistics calculated across a region-of-interest (ROI) delineating a specific vegetation type. From the high-frequency...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.