Skip to main content

Anne Orlando

This project established a permafrost monitoring network in this region, providing a baseline of permafrost thermal regimes for assessing future change at a total of 26 automated monitoring stations. Stations have collected year-round temperature data from the active layer and the permafrost starting from the summer of 2011. The strong correspondence between spatial variability in permafrost thermal regime and an existing ecotype map allowed for the development of a map of ‘permafrost thermal classes’ for the broader study region. Further, the annual temperature data was used to calibrate models of soil thermal regimes as a function of climate, providing estimates of both historic and future permafrost thermal regimes...
This project established a permafrost monitoring network in this region, providing a baseline of permafrost thermal regimes for assessing future change at a total of 26 automated monitoring stations. Stations have collected year-round temperature data from the active layer and the permafrost starting from the summer of 2011. The strong correspondence between spatial variability in permafrost thermal regime and an existing ecotype map allowed for the development of a map of ‘permafrost thermal classes’ for the broader study region. Further, the annual temperature data was used to calibrate models of soil thermal regimes as a function of climate, providing estimates of both historic and future permafrost thermal regimes...
This project established a permafrost monitoring network in this region, providing a baseline of permafrost thermal regimes for assessing future change at a total of 26 automated monitoring stations. Stations have collected year-round temperature data from the active layer and the permafrost starting from the summer of 2011. The strong correspondence between spatial variability in permafrost thermal regime and an existing ecotype map allowed for the development of a map of ‘permafrost thermal classes’ for the broader study region. Further, the annual temperature data was used to calibrate models of soil thermal regimes as a function of climate, providing estimates of both historic and future permafrost thermal regimes...
Climate change is likely to alter snow patterns and characteristics, impacting vegetation, hydrology, permafrost condition, wildlife, and the Alaskans who depend on these resources. Currently, many areas of western Alaska are lacking important data related to snowpack and snow conditions, including the prime winter range for the Western Arctic Caribou Herd (WACH). This project helped monitor snow conditions, which are vital to understanding and predicting landscape level impacts of climate change in western Alaska.​
Climate change is likely to alter snow patterns and characteristics, impacting vegetation, hydrology, permafrost condition, wildlife, and the Alaskans who depend on these resources. Currently, many areas of western Alaska are lacking important data related to snowpack and snow conditions, including the prime winter range for the Western Arctic Caribou Herd (WACH). This project will help monitor snow conditions, which are vital to understanding and predicting landscape level impacts of climate change in western Alaska.​
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.