Skip to main content

Anne W. Nolin

Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/hyp.11144/full): The extensive forests that cover the mountains of the Pacific Northwest, USA, modify snow processes and therefore affect snow water storage as well as snow disappearance timing. However, forest influences on snow accumulation and ablation vary with climate, topography, and land cover and are therefore subject to substantial temporal and spatial variability. We utilize multiple years of snow observations from across the region to assess forest-snow interactions in the relatively warm winter conditions characteristic of the maritime and maritime-continental climates. We (1) quantify the difference in snow magnitude and disappearance timing...
thumbnail
OSU_SnowCourse Summary: Manual snow course observations were collected over WY 2012-2014 from four paired forest-open sites chosen to span a broad elevation range. Study sites were located in the upper McKenzie (McK) River watershed, approximately 100 km east of Corvallis, Oregon, on the western slope of the Cascade Range and in the Middle Fork Willamette (MFW) watershed, located to the south of the McKenzie. The sites were designated based on elevation, with a range of 1110-1480 m. Distributed snow depth and snow water equivalent (SWE) observations were collected via monthly manual snow courses from 1 November through 1 April and bi-weekly thereafter. Snow courses spanned 500 m of forested terrain and 500 m...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.