Skip to main content

Benjamin M. Jones

Water temperature in lakes and lagoons plays a key role in hydrology, water quality, and habitat suitability for aquatic organisms. The purpose of this project is to provide land and resource managers with information related to the past, present, and future temperature trends in lake surface waters in western Alaska. Through a combination of remote sensing, in situ data collection, model development, we will analyze similarities and differences related to spatial and temporal patterns of lake surface temperatures in western Alaska from 1985 to 2100. ​
This dataset consists of rate-of-change statistics for the shorelines at Barter Island, Alaska for the time period 1947 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate shoreline change rates.
thumbnail
Interactions and feedbacks between abundant surface waters and permafrost fundamentally shapelowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceedslake depth and mean annual bed temperatures (MABTs) remain below freezing. However, decliningMIT since the1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity towinter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data.Empirical model experiments suggest that shallow (1m depth) lakes have warmed substantially over the last30years (2.4°C), withMABT above freezing5 of the last 7years.This is incomparison to slower ratesofwarming...
This dataset includes one vector shapefile delineating the position of the top edge of the coastal permafrost bluffs at Barter Island, Alaska spanning seven decades, between the years of 1950 and 2020. Bluff-edge positions delineated from a combination of aerial photography, declassified satellite photography, and very-high resolution satellite imagery can be used to quantify the movement of the bluff edge through time. These data were used to calculate rates of change every 10 meters alongshore using the Digital Shoreline Analysis System (DSAS) version 5.0. DSAS uses a measurement baseline method to calculate rate-of-change statistics. Transects are cast from the reference baseline to intersect each bluff edge...
thumbnail
This project provides a better understanding how linkages among surface-water availability, connectivity, and temperature mediate habitat and trophic dynamics of the Fish Creek Watershed (FCW). These interrelated processes form a shifting mosaic of freshwater habitats across the landscape that can be classified, mapped, understood, and modeled in response to past and future climate and land-use change in a spatial and temporal context. Developing scenarios of freshwater habitat change in this context provides managers and scientists with a flexible template to evaluate a range of potential responses to climate and land-use change. Applying this approach in the FCW is made feasible because of the availability of...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.