Skip to main content

Brian E Reichert

thumbnail
This data release contains the North American Bat Monitoring Program (NABat) Master Sampling Grid at the 5 km x 5 km scale with biologically relevant covariates for NABat analyses attributed to each cell of the 5 km x 5 km grid frame for the continental United States. It was created using ArcPro and the 'sf', 'tidyverse', 'dplyr' and 'exactextractr' packages in R to extract covariates from multiple data sources following the 10 km x 10 km attributed grid process as well as adding additional covariates. These covariates include the habitat characteristics such as percent of wetlands, forest, deciduous and coniferous forest, dominant and subdominant oak types, the number of tree and oak species, topographic features...
thumbnail
The NABat sampling frame is a grid-based finite-area frame spanning Canada, the United States, and Mexico consisting of N total number of 10- by 10-km (100-km2) grid cell sample units for the continental United States, Canada, and Alaska and 5- by 5-km (25km2) for Hawaii and Puerto Rico. This grain size is biologically appropriate given the scale of movement of most bat species, which routinely travel many kilometers each night between roosts and foraging areas and along foraging routes. A Generalized Random-Tessellation Stratified (GRTS) Survey Design draw was added to the sample units from the raw sampling grids (https://doi.org/10.5066/P9M00P17). This sampling design produces an ordered list of units such that...
thumbnail
The NABat sampling frame is a grid-based finite-area frame spanning Canada, the United States, and Mexico consisting of N total number of 10- by 10-km (100-km2) grid cell sample units for the continental United States, Canada, and Alaska and 5- by 5-km (25km2) for Hawaii and Puerto Rico. This grain size is biologically appropriate given the scale of movement of most bat species, which routinely travel many kilometers each night between roosts and foraging areas and along foraging routes. A Generalized Random-Tessellation Stratified (GRTS) Survey Design draw was added to the sample units from the raw sampling grids (https://doi.org/10.5066/P9M00P17). This dataset represents the final 2018 NABat Sampling grid with...
thumbnail
This data release contains the environmental geospatial raster data sets used to estimate summer roosting habitat for 4 species considered under the United States Forest Service proposed Bat Conservation Strategy (Myotis lucifugus, MYLU; Myotis septentrionalis, MYSE; Myotis sodalis, MYSO; and Perimyotis subflavus, PESU). This suite of environmental data was hypothesized to influence summer roost habitat suitability and were produced at a spatial resolution of 250 m per pixel.
thumbnail
These data contain the supplementary results corresponding with the journal article: Using mobile acoustic monitoring and false-positive N-mixture models to estimate bat abundance and population trends by Udell et al. (2024) in Ecological Monographs. These results contain the findings from the North American Bat Monitoring Program's (NABat) "Summer Abundance Status and Trends" analyses which used mobile transect acoustic data for three species (tricolored bat, little brown bat, and big brown bat). Data from the entire summer season (May 1–Aug 31) were used in the modeling process. Here, tabular data for each species include predictions (with uncertainty) of relative abundance (and trends over time) in the summer...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.