Skip to main content

Brian Palik

Concern over global environmental change and associated uncertainty has given rise to greater emphasis on fostering resilience through forest management. We examined the impact of standard silvicultural systems (including clearcutting, shelterwood, and selection) compared with unharvested controls on tree functional identity and functional diversity in three forest types distributed across the northeastern United States. Sites included the Argonne, Bartlett, and Penobscot Experimental Forests located in Wisconsin, New Hampshire, and Maine, respectively. We quantified functional trait means for leaf mass per area, specific gravity, maximum height, height achieved at 20 years, seed mass, drought tolerance, shade tolerance,...
Abstract (from Journal of Applied Ecology): Increasing heat and aridity in coming decades is expected to negatively impact tree growth and threaten forest sustainability in dry areas. Maintaining low stand density has the potential to mitigate the negative effects of increasingly severe droughts by minimizing competitive intensity. However, the direct impact of stand density on the growing environment (i.e. soil moisture), and the specific drought metrics that best quantify that environment, are not well explored for any forest ecosystem. We examined the relationship of varying stand density (i.e. basal area) on soil moisture and stand‐level growth in a long‐term (multi‐decadal), ponderosa pine Pinus ponderosa,...
Categories: Publication; Types: Citation
thumbnail
Spruce-fir forests and associated bird species are recognized as some of the most vulnerable ecosystems and species to the impacts of climate change. This work capitalized on a rich suite of long-term data from these ecosystems to document recent trends in these forests and their associated bird species and developed tools for predicting their future abundance under climate change. Findings from this work indicate declining trends in the abundance of spruce-fir obligate birds, including Bicknell’s Thrush, across the Lake States and New England. In contrast, montane spruce-fir forests in the White and Green Mountains of New England exhibited patterns of increasing abundance, potentially due to their recovery from...
thumbnail
Overview This project examines the ecological impacts of several introduced and expanding forest insects and diseases on forest habitats across the northeastern US and upper Lake States region. To address these novel threats, this work applies large-scale, co-developed experimental studies documenting impacts of ash mortality from emerald ash borer on lowland black ash communities in the Lake States and northern hardwood forests in New England; regional assessments of the impacts of the climate change-mediated expansion of southern pine beetle into northeastern pine barren communities; and ecological characterizations of areas experiencing suppression efforts to reduce the spread of the introduced Asian long-horned...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.