Skip to main content

Craig D Allen

Global climate change is projected to produce warmer, longer, and more frequent droughts, referred to here as “global change-type droughts�, which have the potential to trigger widespread tree die-off. However, drought-induced tree mortality cannot be predicted with confidence, because long-term field observations of plant water stress prior to, and culminating in, mortality are rare, precluding the development and testing of mechanisms. Here, we document plant water stress in two widely distributed, co-occurring species, piñon pine (Pinus edulis) and juniper (Juniperus monosperma), over more than a decade, leading up to regional-scale die-off of piñon pine trees in response to global change-related drought....
One of the greatest uncertainties in global environmental change is predicting changes in feedbacks between the biosphere and atmosphere that could present hazards to current earth system function. Terrestrial ecosystems, and in particular forests, exert strong controls on the global carbon cycle and influence regional hydrology and climatology directly through water and surface energy budgets. Widespread, rapid, drought- and infestation-triggered tree mortality is now emerging as a phenomenon affecting forests globally and may be linked to increasing temperatures and drought frequency and severity. We demonstrate the link between climate-sensitive tree mortality and risks of altered earth system function though...
Piñon pine and juniper woodlands in the southwestern United States are often represented as an expanding and even invasive vegetation type, a legacy of historic grazing, and culpable in the degradation of western rangelands. A long-standing emphasis on forage production, in combination with recent hazard fuel concerns, has prompted a new era of woodland management with stated restoration objectives. Yet the extent and dynamics of piñon-juniper communities that predate intensive Euro-American settlement activities are poorly known or understood, while the intrinsic ecological, aesthetic, and economic values of old-growth woodlands are often overlooked. Historical changes in piñon-juniper stands include two related,...
Aeolian processes are of particular importance in dryland ecosystems where ground cover is inherently sparse because of limited precipitation. Dryland ecosystems include grassland, shrubland, savanna, woodland, and forest, and can be viewed collectively as a continuum of woody plant cover spanning from grasslands with no woody plant cover up to forests with nearly complete woody plant cover. Along this continuum, the spacing and shape of woody plants determine the spatial density of roughness elements, which directly affects aeolian sediment transport. Despite the extensiveness of dryland ecosystems, studies of aeolian sediment transport have generally focused on agricultural fields, deserts, or highly disturbed...
Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought-induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.