Skip to main content

David G Williams

Arid and semi-arid ecosystems of the southwestern US are undergoing changes in vegetation composition and are predicted to experience shifts in climate. To understand implications of these current and predicted changes, we conducted a precipitation manipulation experiment on the Santa Rita Experimental Range in southeastern Arizona. The objectives of our study were to determine how soil surface and seasonal timing of rainfall events mediate the dynamics of leaf-level photosynthesis and plant water status of a native and non-native grass species in response to precipitation pulse events. We followed a simulated precipitation event (pulse) that occurred prior to the onset of the North American monsoon (in June) and...
Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought-induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade...
thumbnail
In the arid southwest of North America, winter precipitation penetrates to deep soil layers, whereas summer "monsoon" precipitation generally wets only surface layers. Use of these spatially separated water sources was determined for three dominant tree species of the pinyon-juniper ecosystem at six sites along a gradient of increasing summer precipitation in Utah and Arizona. Mean summer precipitation ranged from 79 to 286 mm, or from 18% to 60% of the annual total across the gradient. We predicted that, along this summer rainfall gradient, populations of dominant tree species would exhibit a clinal off-on response for use of water from upper soil layers, responding at particular threshold levels of summer precipitation...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.