Skip to main content

Edwin P. Maurer

Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-14-0236.1): Global climate model (GCM) output typically needs to be bias corrected before it can be used for climate change impact studies. Three existing bias correction methods, and a new one developed here, are applied to daily maximum temperature and precipitation from 21 GCMs to investigate how different methods alter the climate change signal of the GCM. The quantile mapping (QM) and cumulative distribution function transform (CDF-t) bias correction methods can significantly alter the GCM’s mean climate change signal, with differences of up to 2°C and 30% points for monthly mean temperature and precipitation, respectively. Equidistant quantile...
Abstract (from http://link.springer.com/article/10.1007%2Fs00382-012-1337-9): Sixteen global general circulation models were used to develop probabilistic projections of temperature (T) and precipitation (P) changes over California by the 2060s. The global models were downscaled with two statistical techniques and three nested dynamical regional climate models, although not all global models were downscaled with all techniques. Both monthly and daily timescale changes in T and P are addressed, the latter being important for a range of applications in energy use, water management, and agriculture. The T changes tend to agree more across downscaling techniques than the P changes. Year-to-year natural internal climate...
This paper describes a publicly available, long-term (1915–2011), hydrologically consistent dataset for the conterminous United States, intended to aid in studies of water and energy exchanges at the land surface. These data are gridded at a spatial resolution of latitude/longitude and are derived from daily temperature and precipitation observations from approximately 20 000 NOAA Cooperative Observer (COOP) stations. The available meteorological data include temperature, precipitation, and wind, as well as derived humidity and downwelling solar and infrared radiation estimated via algorithms that index these quantities to the daily mean temperature, temperature range, and precipitation, and disaggregate them...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.