Skip to main content

Emily K. Meineke

thumbnail
To better understand the impacts of climate change, ecological studies are increasingly addressing the different effects of temperature on organisms and ecosystems. To measure air temperature at biologically relevant scales in the field, ecologists often use small, portable temperature sensors. These sensors must be shielded from solar radiation to provide accurate temperature measurements, but a review of 18 years of ecological literature indicated that shielding practices vary across studies (when the shielding is reported at all), and that ecologists often invent and construct ad-hoc radiation shields without testing their efficacy. The project researchers performed two field experiments to examine the accuracy...
Abstract from Journal of Applied Ecology: Urban forests provide important ecosystem services to city residents, including pollution removal and carbon storage. Climate change and urbanization pose multiple threats to these services. However, how these threats combine to affect urban trees, and thus how to mitigate their effects, remains largely untested because multi-factorial experiments on mature trees are impractical. We used a unique urban warming experiment paired with a laboratory chamber experiment to determine how three of the most potentially damaging factors associated with global change for urban and rural trees—warming, drought, and insect herbivory—affect growth of Quercus phellos(willow oak), the...
Abstract (from http://rsbl.royalsocietypublishing.org/content/10/11/20140586?rss=1): Climate warming is predicted to cause many changes in ectotherm communities, one of which is phenological mismatch, wherein one species' development advances relative to an associated species or community. Phenological mismatches already lead to loss of pollination services, and we predict that they also cause loss of biological control. Here, we provide evidence that a pest develops earlier due to urban warming but that phenology of its parasitoid community does not similarly advance. This mismatch is associated with greater egg production that likely leads to more pests on trees. This publication was developed as part of the...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.