Skip to main content

Eric Beever

thumbnail
FY2013This project retrieves four years of data from over 200 temperature sensors nested within 28 sites across ~40 million hectares of the hydrographic Great Basin. The sensors span all major aspects and up to 700 m of elevation within sites, and occur in numerous management jurisdictions in 18 mountain ranges plus other areas not in ranges. This project: Quantifies the variability of climate at micro-, meso-, and macroscales across the Basin, and across diel, seasonal, and interannual periods. Informs management and conservation efforts, in terms of helping calibrate and refine the climatic stage upon which all biological actors and efforts hinge (Beier and Brost 2010). Feeds into other bioclimatic and wildlife...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2013, 2014, Academics & scientific researchers, California, California, All tags...
Although biotic responses to contemporary climate change are spatially pervasive and often reflect synergies between climate and other ecological disturbances, the relative importance of climatic factors versus habitat extent for species persistence remains poorly understood. To address this shortcoming, we performed surveys for American pikas (Ochotona princeps) at > 910 locations in 3 geographic regions of western North America during 2014 and 2015, complementing earlier modern (1994–2013) and historical (1898–1990) surveys. We sought to compare extirpation rates and the relative importance of climatic factors versus habitat area for pikas in a mainland-versus-islands framework. In each region, we found widespread...
Natural-resource managers and other conservation practitioners are under unprecedented pressure to categorize and quantify the vulnerability of natural systems based on assessment of the exposure, sensitivity, and adaptive capacity of species to climate change. Despite the urgent need for these assessments, neither the theoretical basis of adaptive capacity nor the practical issues underlying its quantification has been articulated in a manner that is directly applicable to natural-resource management. Both are critical for researchers, managers, and other conservation practitioners to develop reliable strategies for assessing adaptive capacity. Drawing from principles of classical and contemporary research and...
Worldwide, many species are responding to ongoing climate change with shifts in distribution, abundance, phenology, or behavior. Consequently, natural-resource managers face increasingly urgent conservation questions related to biodiversity loss, expansion of invasive species, and deteriorating ecosystem services. We argue that our ability to address these questions is hampered by the lack of explicit consideration of species’ adaptive capacity (AC). AC is the ability of a species or population to cope with climatic changes and is characterized by three fundamental components: phenotypic plasticity, dispersal ability, and genetic diversity. However, few studies simultaneously address all elements; often, AC is confused...
How climate constrains species’ distributions through time and space is an important question in the context of conservation planning for climate change. Despite increasing awareness of the need to incorporate mechanism into species distribution models (SDMs), mechanistic modeling of endotherm distributions remains limited in this literature. Using the American pika (Ochotona princeps) as an example, we present a framework whereby mechanism can be incorporated into endotherm SDMs. Pika distribution has repeatedly been found to be constrained by warm temperatures, so we used Niche Mapper, a mechanistic heat-balance model, to convert macroclimate data to pika-specific surface activity time in summer across the western...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.