Skip to main content

Erin Berryman

thumbnail
Landscape carbon (C) flux estimates are necessary for assessing the ability of terrestrial ecosystems to buffer further increases in anthropogenic carbon dioxide (CO2) emissions. Advances in remote sensing have allowed for coarse-scale estimates of gross primary productivity (GPP) (e.g., MODIS 17), yet efforts to assess spatial patterns in respiration lag behind those of GPP. Here, we demonstrate a method to predict growing season soil respiration at a regional scale in a forested ecosystem. We related field measurements (n=144) of growing season soil respiration across subalpine forests in the Southern Rocky Mountains ecoregion to a suite of biophysical predictors with a Random Forest model (30 m pixel size). We...
Postfire shifts in vegetation composition will have broad ecological impacts. However, information characterizing postfire recovery patterns and their drivers are lacking over large spatial extents. In this analysis, we used Landsat imagery collected when snow cover (SCS) was present, in combination with growing season (GS) imagery, to distinguish evergreen vegetation from deciduous vegetation. We sought to (1) characterize patterns in the rate of postfire, dual‐season Normalized Difference Vegetation Index (NDVI) across the region, (2) relate remotely sensed patterns to field‐measured patterns of re‐vegetation, and (3) identify seasonally specific drivers of postfire rates of NDVI recovery. Rates of postfire NDVI...
Categories: Publication; Types: Citation
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.