Skip to main content

Eugénie Euskirchen

thumbnail
Ongoing climate change has the potential to negatively impact Alaska’s ecosystems and the critical services that they provide. These ecosystem services include supplying food and fiber for Alaskan communities, offering opportunities for recreational, cultural, and spiritual activities, and regulating temperature and water flow (runoff, flooding, etc.). Scientists build models to better understand processes and interactions in the natural environment and to use what we know to predict what will happen in the future, so that we can plan for it. Researchers from multiple institutions and disciplines developed an Integrated Ecosystem Model (IEM) for Alaska and Northwest Canada. The model helps forecast how climate...
thumbnail
Ongoing and future climate change throughout Alaska has the potential to affect terrestrial ecosystems and the services that they provide to the people of Alaska and the nation. These services include the gathering of food and fiber by Alaskan communities, the importance of ecosystems to recreation, cultural, and spiritual activities of people in Alaska, and the way that land cover and vegetation in ecosystems affect temperature and water flow (runoff, flooding etc.) throughout the state. Assessments of the effects of climate change on these “ecosystem services” have been hindered by a lack of tools (e.g. computer models) capable of forecasting future landscapes in a changing climate while taking into account numerous...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0168192316303446): Across a global network of eddy covariance flux towers, two relatively new open-path infrared gas analyzers (IRGAs), the IRGASON and the EC150, are increasingly used to measure net carbon dioxide (CO2) fluxes (Fc_OP). Differences in net CO2 fluxes derived from open- and closed-path IRGAs in general remain poorly constrained. In particular, the performance of the IRGASON and the EC150 for measuring Fc_OP has not been characterized yet. These IRGAs measure CO2 absorption, which is scaled with air temperature and pressure before converting it to instantaneous CO2 density. This sensor-internal conversion is based on a slow-response thermistor...
This project will fund travel for face to face meetings with stakeholders (State and Federal agencies and Subsistence resource users) of the Western Alaska Landscape Conservation Cooperative (WALCC) in regard to a scientific modelling project. The modelling seeks to project the effects of climate on available forage for moose and caribou, as modified by snow cover and fire regimes, through 2100. The face to face meetings will present the goals and objectives of the modelling effort, seek identification of areas of particular concern for managers and subsistence users, and seek input on additional objectives that may be addressed by the project. At the completion of the project, there will be a second set of face...
Wetland CH4 emissions are among the most uncertain components of the global CH4 budget. The complex nature of wetland CH4 processes makes it challenging to identify causal relationships for improving our understanding and predictability of CH4 emissions. In this study, we used the flux measurements of CH4 from eddy covariance towers (30 sites from 4 wetlands types: bog, fen, marsh, and wet tundra) to construct a causality-constrained machine learning (ML) framework to explain the regulative factors and to capture CH4 emissions at sub-seasonal scale. We found that soil temperature is the dominant factor for CH4 emissions in all studied wetland types. Ecosystem respiration (CO2) and gross primary productivity exert...
Categories: Publication; Types: Citation
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.