Skip to main content

Feng Zhao

Abstract: Time series Landsat data have been used to track ecosystem disturbances using an algorithm such as the vegetation change tracker. However, efficiently identifying and separating types of disturbances (e.g., wildfires and harvests) still remain a technical challenge. In this letter, we tested the support vector machine algorithm in separating forest disturbance types, including wildfires, harvests, and other disturbance types (a generalized disturbance class, including insect disease outbreak, tornado, snow damage, and drought-induced mortality) in the Greater Yellowstone Ecosystem (GYE) using annual Landsat images from 1984 to 2010. The algorithm has been proven to be highly reliable, with overall accuracy...
This data release provides inputs needed to run the LANDIS-II landscape change model, NECN and Base Fire extensions for the Greater Yellowstone Ecosystem (GYE), USA, and simulation results that underlie figures and analysis in the accompanying publication. We ran LANDIS-II simulations for 112 years, from 1988-2100, using interpolated weather station data for 1988-2015 and downscaled output from 5 general circulation models (GCMs) for 2016-2100. We also included a control future scenario with years drawn from interpolated weather station data from 1980-2015. Model inputs include raster maps (250 × 250 m grid cells) of climate regions and tables of monthly temperature and precipitation for each climate region. We...
Wildland fire is a key ecosystem process that shapes the landscape of Western United States. Changes in fire regimes can therefore have profound impact on ecosystem functions and services, including carbon cycling, habitat conditions, and biodiversity. This study examined fire regime changes in the Northern Rocky Mountain region using a landscape succession model (LANDSUMv4). The objective is to report a new method to develop fire regime condition class (FRCC) maps by comparing historical reference conditions of fire regimes – simulated using historical fire record and the LANDSUMv4 model – with current fire regimes developed using 27 years remote sensing fire product and LANDSUMv4. Results of this study indicate...
The effects of changing climate and disturbance on mountain forest carbon (C) stocks vary with tree species distributions and over elevational gradients. Warming can not only increase C uptake by stimulating productivity at high elevations but also enhance C release by increasing respiration and the frequency, intensity and size of wildfires. To understand the consequences of climate change for temperate mountain forests, we simulated interactions among climate, wildfire, tree species and their combined effects on regional C stocks in forests of the Greater Yellowstone Ecosystem, USA (GYE) with the LANDISā€II landscape change model. Simulations used historical climate and future potential climate represented by downscaled...
Categories: Publication; Types: Citation
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.