Skip to main content

Flannigan, Mike D.

thumbnail
In the boreal forest of North America, as in any fire-prone biome, three environmental factors must coincide for a wildfire to occur: an ignition source, flammable vegetation, and weather that is conducive to fire. Despite recent advances, the relative importance of these factors remains the subject of some debate. The aim of this study was to develop models that identify the environmental controls on spatial patterns in area burned for the period 1980-2005 at several spatial scales in the Canadian boreal forest. Boosted regression tree models were built to relate high-resolution data for area burned to an array of explanatory variables describing ignitions, vegetation, and long-term patterns in fire-conducive weather...
Five independent multicentury reconstructions of the July Canadian Drought Code and one reconstruction of the mean July-August temperature were developed using a network of 120 well-replicated tree-ring chronologies covering the area of the eastern Boreal Plains to the eastern Boreal Shield of Canada. The reconstructions were performed using 54 time-varying reconstruction submodels that explained up to 50% of the regional drought variance during the period of 1919-84. Spatial correlation fields on the six reconstructions revealed that the meridional component of the climate system from central to eastern Canada increased since the mid-nineteenth century. The most obvious change was observed in the decadal scale...
Categories: Publication; Types: Citation
thumbnail
Fire regimes of the Canadian boreal forest are driven by certain environmental factors that are highly variable from year to year (e.g., temperature, precipitation) and others that are relatively stable (e.g., land cover, topography). Studies examining the relative influence of these environmental drivers on fire activity suggest that models making explicit use of interannual variability appear to better capture years of climate extremes, whereas those using a temporal average of all available years highlight the importance of land-cover variables. It has been suggested that fire models built at different temporal resolutions may provide a complementary understanding of controls on fire regimes, but this claim has...
thumbnail
Given that they can burn for weeks or months, wildfires in temperate and boreal forests may become immense (eg 100 ? 104 km2). However, during the period within which a large fire is ?active?, not all days experience weather that is conducive to fire spread; indeed most of the spread occurs on a small proportion (e.g. 1 ~ 15 days) of not necessarily consecutive days during the active period. This study examines and compares the Canada-wide patterns in fire-conducive weather (?potential? spread) and the spread that occurs on the ground (?realized? spread). Results show substantial variability in distributions of potential and realized spread days across Canada. Both potential and realized spread are higher in western...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.