Skip to main content

Hsieh, Paul A

When the Macondo well was shut in on July 15, 2010, the shut-in pressure recovered to a level that indicated the possibility of oil leakage out of the well casing into the surrounding formation. Such a leak could initiate a hydraulic fracture that might eventually breach the seafloor, resulting in renewed and uncontrolled oil flow into the Gulf of Mexico. To help evaluate whether or not to reopen the well, a MODFLOW model was constructed within 24 h after shut in to analyze the shut-in pressure. The model showed that the shut-in pressure can be explained by a reasonable scenario in which the well did not leak after shut in. The rapid response provided a scientific analysis for the decision to keep the well shut,...
Categories: Publication; Types: Citation
The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified...
Categories: Publication; Types: Citation
We simulate three types of forced-gradient tracer tests (converging radial flow, unequal strength two well, and equal strength two well) and natural-gradient tracer tests in multiple realizations of heterogeneous two-dimensional aquifers with a hydraulic conductivity distribution characterized by a spherical variogram. We determine longitudinal dispersivities (αL) by analysis of forced-gradient test breakthrough curves at the pumped well and by spatial moment analysis of tracer concentrations during the natural-gradient tests. Results show that among the forced-gradient tests, a converging radial-flow test tends to yield the smallest αL, an equal strength two-well test tends to yield the largest αL, and an unequal...
Inflation and deflation of large calderas is traditionally interpreted as being induced by volume change of a discrete source embedded in an elastic or viscoelastic half-space, though it has also been suggested that hydrothermal fluids may play a role. To test the latter hypothesis, we carry out numerical simulations of hydrothermal fluid flow and poroelastic deformation in calderas by coupling two numerical codes: (1) TOUGH2 [Pruess et al., 1999], which simulates flow in porous or fractured media, and (2) BIOT2 [Hsieh, 1996], which simulates fluid flow and deformation in a linearly elastic porous medium. In the simulations, high-temperature water (350°C) is injected at variable rates into a cylinder (radius 50...
The straight-line method presented by Papadopulos requires a minimum of three observation wells for determining the transmissivity tensor of a homogeneous and anisotropic aquifer. A simplification of this method was developed for fractured aquifers where the principal directions of the transmissivity tensor are known prior to implementation, such as when fracture patterns on outcropping portions of the aquifer may be used to infer the principal directions. This new method assumes that observation wells are drilled along the two principal directions from the pumped well, thus reducing the required number of observation wells to two. This method was applied for an aquifer test in the fractured Navajo Sandstone of...
Categories: Publication; Types: Citation
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.