Skip to main content

J. Kevin Hiers

Abstract (from FireEcology) Background: Projected trajectories of climate and land use change over the remainder of the twenty-first century may result in conditions and situations that require flexible approaches to conservation planning and practices. For example, prescribed burning is a widely used management tool for promoting longer-term resilience and sustainability in longleaf pine ecosystems of the southeastern United States, but regional stressors such as climatic warming, changing fire conditions, and an expanding wildland-urban interface may challenge its application. To facilitate the development of fire management strategies that account for such changes, we surveyed nearly 300 fire managers to elicit...
Categories: Publication; Types: Citation
Abstract (from International Journal of Wildland Fire): Prescribed burning is a critical tool for managing wildfire risks and meeting ecological objectives, but its safe and effective application requires that specific meteorological criteria (a ‘burn window’) are met. Here, we evaluate the potential impacts of projected climatic change on prescribed burning in the south-eastern United States by applying a set of burn window criteria that capture temperature, relative humidity and wind speed to projections from an ensemble of Global Climate Models under two greenhouse gas emission scenarios. Regionally, the percentage of suitable days for burning changes little during winter but decreases substantially in summer...
Categories: Publication; Types: Citation
Abstract (from Science of The Total Environment): Globally increasing wildfires have been attributed to anthropogenic climate change. However, providing decision makers with a clear understanding of how future planetary warming could affect fire regimes is complicated by confounding land use factors that influence wildfire and by uncertainty associated with model simulations of climate change. We use an ensemble of statistically downscaled Global Climate Models in combination with the Physical Chemistry Fire Frequency Model (PC2FM) to project changing potential fire probabilities in the conterminous United States for two scenarios representing lower (RCP 4.5) and higher (RCP 8.5) greenhouse gas emission futures....
Categories: Publication; Types: Citation
Abstract (from ScienceDirect): Potential changes in wildland fire regimes due to anthropogenic climate change can be projected using data from climate models, but directly applying these meteorological variables to long-term planning and adaptive management activities may be difficult for decision makers. Analog mapping, in contrast, creates more intuitive assessments of changing fire regimes that also recognize the complex, multivariate, and multi-scalar nature of ecosystems. Here, we use data from 20 downscaled climate models under two climate forcing scenarios, Representative Concentration Pathways (RCP 4.5 and 8.5), to identify and map future climate-fire analogs for 655 protected areas in the conterminous U.S....
Categories: Publication; Types: Citation
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.