Skip to main content

Jacob DeAngelo

The data in the csv and text files provided in this release are an update to the data tables originally published in USGS Open-File Report (OFR) 83-250 (https://doi.org/10.3133/cir892). Those data were published as paper tables and have until now only been available as pdf image documents that were not machine readable. USGS OFR 83-250 presented data for 2071 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 states. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions...
thumbnail
This package contains data in a portion of northern Nevada, the extent of the ‘Nevada Machine Learning Project’ (DE-EE0008762). Slip tendency (TS) and dilation tendency (TD) were calculated for the all the faults in the Nevada ML study area. TS is the ratio between the shear components of the stress tensor and the normal components of the stress tensor acting on a fault plane. TD is the ratio of all the components of the stress tensor that are normal to a fault plane. Faults with higher TD are relatively more likely to dilate and host open, conductive fractures. Faults with higher TS are relatively more likely to slip, and these fractures may be propped open and conductive. These values of TS and TD were used to...
thumbnail
Geothermal well data from Southern Methodist University (SMU, 2021) and the U.S. Geological Survey (Sass et al., 2005) were used to create maps of estimated background conductive heat flow across the greater Great Basin region of the western US. The heat flow maps in this data release were created using a process that sought to remove hydrothermal convective influence from predictions of background conductive heat flow. Heat flow maps were constructed using a custom-developed iterative process using weighted regression, where convectively influenced outliers were de-emphasized by assigning lower weights to measurements that are very different from the estimated local trend (e.g., local convective influence). The...
thumbnail
This package contains a map surface that depicts the estimated spatial variation of conductive heat flow (mW/m²) in a portion of northern Nevada, the extent of the ‘Nevada Machine Learning Project’ (DE-EE0008762). It was generated using well locations that had an estimated heat flow value from a measured thermal gradient and thermal conductivity, mainly using data from Southern Methodist University, with some additional USGS data. Well data are included along with and a map surface depicting estimated standard error of the heat flow interpolation.
thumbnail
As part of the periodic update of the geothermal energy assessments for the USA (e.g., last update by Williams and others, 2008), a new three-dimensional temperature map has been constructed for the Great Basin, USA. Williams and DeAngelo (2011) identified uncertainty in estimates of conductive heat flow near land surface as the largest contributor to uncertainty in previously published temperature maps. The new temperature maps incorporate new conductive heat flow estimates developed by DeAngelo and others (2023). Predicted temperatures at depth are compared with representative measurements (for conductively dominated conditions), showing good agreement under relatively simple uniform conditions. Inputs included...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.