Skip to main content

Jean Brennan

thumbnail
FY2013This project retrieves four years of data from over 200 temperature sensors nested within 28 sites across ~40 million hectares of the hydrographic Great Basin. The sensors span all major aspects and up to 700 m of elevation within sites, and occur in numerous management jurisdictions in 18 mountain ranges plus other areas not in ranges. This project: Quantifies the variability of climate at micro-, meso-, and macroscales across the Basin, and across diel, seasonal, and interannual periods. Informs management and conservation efforts, in terms of helping calibrate and refine the climatic stage upon which all biological actors and efforts hinge (Beier and Brost 2010). Feeds into other bioclimatic and wildlife...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2013, 2014, Academics & scientific researchers, California, California, All tags...
The Appalachian LCC: Promotes collaboration and increases funding and research capacity among partners to address the environmental threats that is beyond the ability of any one agency. Is a trusted source of information that develops the tools, methods, and data resource managers need to design and deliver landscape-scale conservation. Leverages funding, staff, and resources from all partners to develop cost-effective science and conservation that benefits human communities and ecosystems. Develops and implements conservation of large connected areas that will enhance and sustain the ecological, economic, and historical value of the Appalachian region. Work leads to effective conservation that generates clean...
Tags: LCC
Worldwide, many species are responding to ongoing climate change with shifts in distribution, abundance, phenology, or behavior. Consequently, natural-resource managers face increasingly urgent conservation questions related to biodiversity loss, expansion of invasive species, and deteriorating ecosystem services. We argue that our ability to address these questions is hampered by the lack of explicit consideration of species’ adaptive capacity (AC). AC is the ability of a species or population to cope with climatic changes and is characterized by three fundamental components: phenotypic plasticity, dispersal ability, and genetic diversity. However, few studies simultaneously address all elements; often, AC is confused...
Despite striking global change, management to ensure healthy landscapes and sustained natural resources has tended to set objectives on the basis of the historical range of variability in stationary ecosystems. Many social–ecological systems are moving into novel conditions that can result in ecological transformation. We present four foundations to enable a transition to future-oriented conservation and management that increases capacity to manage change. The foundations are to identify plausible social–ecological trajectories, to apply upstream and deliberate engagement and decision-making with stakeholders, to formulate management pathways to desired futures, and to consider a portfolio approach to manage risk...
Categories: Publication; Types: Citation
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.