Skip to main content

Jeffrey A Coe

thumbnail
Subaerial landslides at the head of Barry Arm Fjord in southern Alaska could generate tsunamis (if they rapidly failed into the Fjord) and are therefore a potential threat to people, marine interests, and infrastructure throughout the Prince William Sound region. Knowledge of ongoing landslide movement is essential to understanding the threat posed by the landslides. Because of the landslides' remote location, field-based ground monitoring is challenging. Alternatively, periodic acquisition and interferometric processing of satellite-based synthetic aperture radar data provide an accurate means to remotely monitor landslide movement. Interferometric synthetic aperture radar (InSAR) uses two Synthetic Aperture...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). This "Child item" page includes videos of debris flows captured by one of the high-definition cameras at the monitoring site in Chalk Cliffs, CO. This camera (Wide-angle camera) is located near Station 1 on the opposite side of the basin with a broad view of the channel. The attached figure "station_and_camera_locations.png" provides an overview figure with the location of the three cameras and three stations along the channel. Video recording for all cameras is triggered using a rainfall threshold, derived from rainfall measurements from a rain gauge (Michel et al.,...
thumbnail
The effects of climate change have the potential to impact slope stability. Negative impacts are expected to be greatest at high northerly latitudes where degradation of permafrost in rock and soil, debuttressing of slopes as a result of glacial retreat, and changes in ocean ice-cover are likely to increase the susceptibility of slopes to landslides. In the United States, the greatest increases in air temperature and precipitation are expected to occur in Alaska. In order to assess the impact that these environmental changes will have on landslide size (magnitude), mobility, and frequency, inventories of historical landslides are needed. These inventories provide baseline data that can be used to identify changes...
thumbnail
Summary This data release contains postprocessed model output from a simulation of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A simulated displacement wave was generated by rapid motion of unstable material into Barry Arm fjord. We consider the wave propagation in Harriman Fjord and Barry Arm, western Prince William Sound (area of interest and place names depicted in Figure 1). We consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b). As in Barnhart and others (2021c), we used a simulation setup similar to Barnhart and others (2021a, 2021b), but our results differ because we used different topography and bathymetry datasets....
thumbnail
Subaerial landslides at the head of the Barry Arm fjord remain a tsunami threat for the Prince William Sound region in southern Alaska. Tasked RADARSAT-2 synthetic aperture radar (SAR) data from two ultrafine beam modes (2 m), U19 and U15, were used to measure landslide movement of slopes near the toe of the Barry Glacier between 21 May 2021 and 5 November 2021. Data were acquired every 24 days, with U19 beginning on 21 May 2021 and U15 beginning on 28 May 2021. For a few planned acquisition dates, scenes were not captured because of technical issues. Interferometric synthetic aperture radar (InSAR) deformation maps (interferograms) are provided in wrapped phase (line-of-sight (LOS) phase in radians between 0 and...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.