Skip to main content

Jeffrey Danielson

Hurricane Sandy, which made landfall on October 29, 2012, near Brigantine, New Jersey, had a significant impact on coastal New Jersey, including the large areas of emergent wetlands at Edwin B. Forsythe National Wildlife Refuge (NWR) and the Barnegat Bay region. In response to Hurricane Sandy, U.S. Geological Survey (USGS) has undertaken several projects to assess the impacts of the storm and provide data and scientific analysis to support recovery and restoration efforts. As part of these efforts, the USGS Coastal and Marine Geology Program (CMGP) sponsored Coastal National Elevation Database (CoNED) Applications Project in collaboration with the USGS National Geospatial Program (NGP), and National Oceanic and...
thumbnail
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) has initiated the development of a second pilot 3D National Topography Model (3DNTM) to generate 3-dimensional surface elevation models that integrate topographic bare-earth elevation surfaces with river channel bed and coastal bathymetry and topobathymetry. Detailed knowledge of integrated river system topography, bathymetry, and topobathymetry is essential for fisheries habitat restoration, hydrologic modeling, and other key science applications such as flood mapping and identification of fluvial geomorphic features. An integrated 1-meter topobathymetric digital elevation model (TBDEM) for Hardin, Orange, and Jefferson counties in Southeast Texas has...
Majuro Atoll in the central Pacific has high coastal vulnerability due to low-lying islands, rising sea level, high wave events, eroding shorelines, a dense population center, and limited freshwater resources. Land elevation is the primary geophysical variable that determines exposure to inundation in coastal settings. Accordingly, coastal elevation data (with accuracy information) are critical for assessments of inundation exposure. Previous research has demonstrated the importance of using high-accuracy elevation data and rigorously accounting for uncertainty in inundation assessments. A quantitative analysis of inundation exposure was conducted for Majuro Atoll, including accounting for the cumulative vertical...
thumbnail
To support the modeling of storm-induced flooding, the U.S. Geological Survey (USGS) Coastal National Elevation Database (CoNED) Applications Project has created an integrated 1-meter topobathymetric digital elevation model (TBDEM) for the Strait of Juan de Fuca, which is located at the outlet of the Salish Sea. The international boundary between Canada and the northwestern part of the United States bisects the strait. High-resolution coastal topobathymetric data is required to identify flooding, storms, and sea-level rise inundation hazard zones and other earth science applications, such as the development of sediment transport and storm surge models. The new TBDEM consists of the best available multi-source topographic...
thumbnail
Hurricane Sandy, which made landfall on October 29, 2012, near Brigantine, New Jersey, had a significant impact on coastal New Jersey, including the large areas of emergent wetlands at Edwin B. Forsythe National Wildlife Refuge (NWR) and the Barnegat Bay region. In response to Hurricane Sandy, U.S. Geological Survey (USGS) has undertaken several projects to assess the impacts of the storm and provide data and scientific analysis to support recovery and restoration efforts. As part of these efforts, the USGS Coastal and Marine Geology Program (CMGP) sponsored Coastal National Elevation Database (CoNED) Applications Project in collaboration with the USGS National Geospatial Program (NGP), and National Oceanic and...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.