Skip to main content

Jennifer Wilkening

Abstract (from Fisheries Magazine): Ecosystem transformation can be defined as the emergence of a self‐organizing, self‐sustaining, ecological or social–ecological system that deviates from prior ecosystem structure and function. These transformations are occurring across the globe; consequently, a static view of ecosystem processes is likely no longer sufficient for managing fish, wildlife, and other species. We present a framework that encompasses three strategies for fish and wildlife managers dealing with ecosystems vulnerable to transformation. Specifically, managers can resist change and strive to maintain existing ecosystem composition, structure, and function; accept transformation when it is not feasible...
Categories: Publication; Types: Citation
(Abstract from MDPI): Traditional conservation practices have primarily relied on maintaining biodiversity by preserving species and habitats in place. Many regions are experiencing unprecedented environmental conditions, shifts in species distribution and habitats, and high turnover in species composition, resulting in ecological transformation. Natural resource managers have lacked tools for identifying and selecting strategies to manage ecosystem transformation. A recently formalized decision support framework provides a way for managers to resist, accept, or direct (RAD) the trajectory of change. We begin by identifying how historical conservation practices are built into the RAD framework. Next, we describe...
Abstract (from Frontiers in Ecology and the Environment): Ecosystem transformation involves the emergence of persistent ecological or social–ecological systems that diverge, dramatically and irreversibly, from prior ecosystem structure and function. Such transformations are occurring at increasing rates across the planet in response to changes in climate, land use, and other factors. Consequently, a dynamic view of ecosystem processes that accommodates rapid, irreversible change will be critical for effectively conserving fish, wildlife, and other natural resources, and maintaining ecosystem services. However, managing ecosystems toward states with novel structure and function is an inherently unpredictable and...
Categories: Publication; Types: Citation
Background Large-river decision-makers are charged with maintaining diverse ecosystem services through unprecedented social-ecological transformations as climate change and other global stressors intensify. The interconnected, dendritic habitats of rivers, which often demarcate jurisdictional boundaries, generate complex management challenges. Here, we explore how the Resist–Accept–Direct (RAD) framework may enhance large-river management by promoting coordinated and deliberate responses to social-ecological trajectories of change. The RAD framework identifies the full decision space of potential management approaches, wherein managers may resist change to maintain historical conditions, accept change toward different...
Abstract (from BioScience): Intensifying global change is propelling many ecosystems toward irreversible transformations. Natural resource managers face the complex task of conserving these important resources under unprecedented conditions and expanding uncertainty. As once familiar ecological conditions disappear, traditional management approaches that assume the future will reflect the past are becoming increasingly untenable. In the present article, we place adaptive management within the resist–accept–direct (RAD) framework to assist informed risk taking for transforming ecosystems. This approach empowers managers to use familiar techniques associated with adaptive management in the unfamiliar territory of...
Categories: Publication; Types: Citation
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.