Skip to main content

Jian Wang

thumbnail
These data were compiled to create models that estimate entrainment rates and population growth rates of smallmouth bass below Glen Canyon Dam. Objective(s) of our study were to predict smallmouth bass entrainment rates and population growth under different future scenarios of Lake Powell elevations and management. These data represent parameters needed for associated models and data needed to produce figures. These data were collected from publicly available online sources including published papers and federal government datasets. These data were assembled by researchers from U.S. Geological Survey, Utah State University, Colorado State University, U.S. Fish and Wildlife Service. These data can be used to run...
Categories: Data; Tags: Aquatic Biology, Arizona, Climatology, Colorado River, Diamond Creek, All tags...
Abstract (from ScienceDirect): Vegetation phenology has received increasing attention in climate change research. Near-surface sensing using digital repeat photography has proven to be useful for ecosystem-scale monitoring of vegetation phenology. However, our understanding of the link between phenological metrics derived from digital repeat photography and the phenology of forest canopy photosynthesis is still incomplete, especially for evergreen plant species. Using 49 site-years of digital images from the PhenoCam Network from eight evergreen needleleaf forest (ENF) and six deciduous broadleaf forest (DBF) sites in North America, we explored the potential of the green chromatic (GCC) and red chromatic coordinates...
Categories: Publication; Types: Citation; Tags: North Central CASC
Our ability to sustainably manage the Colorado River is clearly in doubt. The Bureau of Reclamation’s 2012 Water Supply and Demand Study demonstrated the precarious balance that currently exists between water supply and the amount consumptively used by society. A future with either declining water supplies or additional consumptive uses will undoubtedly upset this balance. This balance is threatened, because: • Climate change science predicts that watershed runoff will decline due to increased evapotranspiration from rising temperatures; and • Water users, especially in the Upper Basin, aspire to increase consumptive uses by developing new projects. This white paper describes how declining runoff and increased consumptive...
Drought has impacted the Colorado River basin for the past 20 years and is predicted to continue. In response, decisions about how much water should be stored in large reservoirs and how much water can be consumptively used will be necessary. These decisions have the potential to limit riverine ecosystem management options through the effect water-supply decisions have on reservoir elevations. We used projected hydrology and river temperatures to compare the outcome of combinations of water storage scenarios and consumptive use limits on metrics associated with ecosystem management of the Colorado River in Grand Canyon. Ecosystem management metrics included the ability to implement designer flows, temperature suitability...
Categories: Publication; Types: Citation
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.