Skip to main content

John H Williams

thumbnail
This folder contains the raw and processed TEM data and inverted soundings showing resistivity (in ohm-m) with depth for all survey sites that were part of transect 1. In October and November 2016-2017, transient electromagnetic (TEM) data, also called time domain electromagnetic (TDEM) surveys, were acquired at 120 locations in the Genesee Valley, Livingston County, in New York, in order to characterize the subsurface resistivity structure in support of a U.S. Geological Survey groundwater investigation. The TEM data were collected as part of a project to evaluate geophysical methods to characterize the valley-fill sediments, underlying bedrock, and salinity of the subsurface. TEM data were collected using an ABEM...
thumbnail
In October and November 2016-2017, transient electromagnetic (TEM) data, also called time domain electromagnetic (TDEM) surveys, were acquired at 120 locations in the Genesee Valley, Livingston County, New York, in order to characterize the subsurface resistivity structure in support of a U.S. Geological Survey groundwater investigation. The TEM data were collected as part of a project to evaluate geophysical methods to characterize the valley-fill sediments, underlying bedrock, and salinity of the subsurface. TEM data were collected using an ABEM WalkTEM unit (acquisition software V 1.1.0 and newer) using two transmitter loop (Tx) sizes, 100 by 100 meter square and 40 by 40 meters square, a center-loop receiver...
thumbnail
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
thumbnail
This dataset includes well logs used in the creation of the Cortland hydrogeologic framework. Well logs were used from multiple sources (DEC, DOT, NWIS) and were a crucial component in generating hydrogeologic layer elevations and thicknesses. Well logs are available in their original form on GeoLog Locator (https://webapps.usgs.gov/GeoLogLocator/#!/) and provided here in the digitized form (shapefiles and feature classes), which were used in the generation of the hydrogeologic framework.
thumbnail
Digital hydrogeologic datasets were developed for the Rondout-Neversink study area in upstate New York in cooperation with the New York State Department of Environmental Conservation. These datasets define the hydrogeologic framework of the valley-fill aquifer and surrounding till-covered uplands within the study area. Datasets include: bedrock elevation raster, lacustrine silt and clay top and bottom elevation rasters, lidar minimum elevation raster, lacustrine extent polygon, valley-fill extent polygon, and surficial geology polygons. Elevation layers were interpolated at 125-foot discretization to match the model grid cell size.
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.